Optical control and readout of spins in enriched 28Si for applications in quantum information

富集 28Si 中自旋的光学控制和读出在量子信息中的应用

基本信息

  • 批准号:
    RGPIN-2014-04651
  • 负责人:
  • 金额:
    $ 5.1万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

While the principles of quantum mechanics were discovered almost a century ago, there is a new and growing appreciation that they could lead to new ‘quantum technologies’ having spectacular potential for completely new and in some cases disruptive applications in communications, security, and computing. In a quantum computer (QC), superposition allows the conventional bit (0 or 1) to be replaced by an infinite range of superpositions of two states, giving a quantum bit, or qubit. Qubits can be linked using entanglement so that a measurement on one affects the outcome of a measurement on the other, even when they are completely separated. This defies our intuition, based as it is on macroscopic reality, but can be completely accounted for by quantum mechanics. It is now well understood that for certain classes of important problems, a QC using these properties could be enormously more powerful, and faster, than the largest imaginable conventional computer. This paradigm-shifting potential is fueling intense research around the world to find a technology for making a QC of sufficient complexity to solve this broad class of problems. A wide range of systems is being investigated, from photons to atoms to subatomic particles such as electrons and nuclear spins. Much activity is focused on semiconductor-based approaches, especially involving silicon (Si), which is the basis for our present computing and information technologies. It is hoped that the existing Si materials and nanoscale device technology could be harnessed to build a QC, if suitable qubits and the means of preparing, coupling and measuring them can be developed. Canada has strength in these areas, including the Institute for Quantum Computing in Waterloo, but ours is the only high-profile program focused on Si-based QI. Canada also has the only company currently selling QC technology, D-Wave Systems, of Burnaby BC. While the D-Wave computer is based on quantum annealing, and not the algorithmic approach first envisioned for constructing a ‘universal’ QC, it represents a very significant opportunity for Canadian science and technology. Our discovery that enriched 28Si has a unique property, namely, the linewidths of various optical transitions are much sharper in 28Si than in ordinary Si (or in any other semiconductor) led to new optical methods for controlling and measuring the electron and nuclear spins of impurities which are prime candidates for qubits in Si. These techniques have allowed us to measure coherence times - the time for which quantum information can be maintained - far beyond those of any other solid state system. We have recently used the optical methods developed in our lab to demonstrate coherent storage at room temperature for over 39 minutes – more than one thousand times longer than the previous record. Our results and new methods are receiving wide attention, and energizing an intense effort to realize a Si-based QC technology. The proposed program will capitalize on our achievements and collaborations, and continue to set new directions in this field. We will demonstrate that our optical methods can be used to work with new centers in Si allowing for greater complexity, and the testing of important QI concepts. We will explore systems selected for the possibility of using spins in Si for long term, retrievable storage of coherent information from superconducting qubit circuitry. We will also investigate other classes of defects that have the potential to lead to completely new approaches to QI in Si. This program will train future leaders, equipped with expertise in semiconductors, optics, cryogenics and quantum information theory, who will contribute to making the promise of quantum technologies a reality.
虽然量子力学原理是在近一个世纪前发现的,但人们越来越多地认识到,它们可能会带来新的量子技术,在通信、安全和计算领域具有全新的、在某些情况下具有颠覆性应用的惊人潜力。在量子计算机(QC)中,叠加允许将传统的比特(0或1)替换为无限范围的两个状态的叠加,从而得到量子比特或量子比特。量子比特可以使用纠缠连接在一起,因此一个量子比特的测量结果会影响另一个量子比特测量的结果,即使它们是完全分开的。这违背了我们的直觉,因为它是基于宏观现实的,但完全可以用量子力学来解释。现在很好地理解,对于某些类别的重要问题,使用这些性质的QC可能比可以想象的最大的传统计算机强大得多,速度也快得多。 这种范式转换的潜力正在推动世界各地的紧张研究,以找到一种技术来制造足够复杂的QC来解决这类广泛的问题。人们正在研究一系列系统,从光子到原子,再到亚原子粒子,如电子和核自旋。许多活动都集中在基于半导体的方法上,特别是涉及硅(Si),这是我们目前计算和信息技术的基础。如果能开发出合适的量子比特及其制备、耦合和测量手段,就有希望利用现有的硅材料和纳米器件技术来构建QC。 加拿大在这些领域拥有优势,包括滑铁卢的量子计算研究所,但我们的项目是唯一一个专注于硅基QI的高调项目。加拿大目前还拥有唯一一家销售QC技术的公司--伯纳比BC的D-Wave Systems。虽然D-Wave计算机是基于量子退火法的,而不是最初设想的构建“通用”QC的算法方法,但它对加拿大的科学和技术来说是一个非常重要的机会。 我们发现,富28Si具有一种独特的性质,即在28Si中各种光学跃迁的线宽比普通硅(或任何其他半导体)中的线宽都要尖锐得多,这导致了控制和测量杂质的电子和核自旋的新的光学方法,这些都是Si中量子比特的主要候选者。这些技术使我们能够测量相干时间--量子信息可以保持的时间--远远超过任何其他固态系统。我们最近使用了我们实验室开发的光学方法来演示在室温下相干存储超过39分钟--比之前的记录长了1000多倍。我们的结果和新方法受到了广泛的关注,并激发了实现硅基QC技术的巨大努力。 拟议的计划将利用我们的成就和合作,并继续在这一领域设定新的方向。我们将展示我们的光学方法可以用来处理硅中的新中心,从而实现更大的复杂性,并测试重要的QI概念。我们将探索在硅中长期使用自旋的可能性的系统,从超导量子比特电路中检索相干信息的存储。我们还将研究其他类型的缺陷,这些缺陷有可能导致对硅中QI的全新方法。该项目将培养未来的领导者,他们拥有半导体、光学、低温和量子信息理论方面的专业知识,他们将为实现量子技术的承诺做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thewalt, Michael其他文献

Thewalt, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thewalt, Michael', 18)}}的其他基金

Investigating deep defects in 28Si for potential applications in quantum information and communication
研究 28Si 的深层缺陷在量子信息和通信中的潜在应用
  • 批准号:
    RGPIN-2019-07221
  • 财政年份:
    2022
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating deep defects in 28Si for potential applications in quantum information and communication
研究 28Si 的深层缺陷在量子信息和通信中的潜在应用
  • 批准号:
    RGPIN-2019-07221
  • 财政年份:
    2021
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating deep defects in 28Si for potential applications in quantum information and communication
研究 28Si 的深层缺陷在量子信息和通信中的潜在应用
  • 批准号:
    RGPIN-2019-07221
  • 财政年份:
    2020
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating deep defects in 28Si for potential applications in quantum information and communication
研究 28Si 的深层缺陷在量子信息和通信中的潜在应用
  • 批准号:
    RGPIN-2019-07221
  • 财政年份:
    2019
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Optical control and readout of spins in enriched 28Si for applications in quantum information
富集 28Si 中自旋的光学控制和读出,用于量子信息应用
  • 批准号:
    RGPIN-2014-04651
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Optical control and readout of spins in enriched 28Si for applications in quantum information
富集 28Si 中自旋的光学控制和读出在量子信息中的应用
  • 批准号:
    RGPIN-2014-04651
  • 财政年份:
    2017
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Optical control and readout of spins in enriched 28Si for applications in quantum information
富集 28Si 中自旋的光学控制和读出在量子信息中的应用
  • 批准号:
    462549-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Optical control and readout of spins in enriched 28Si for applications in quantum information
富集 28Si 中自旋的光学控制和读出在量子信息中的应用
  • 批准号:
    RGPIN-2014-04651
  • 财政年份:
    2016
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Optical control and readout of spins in enriched 28Si for applications in quantum information
富集 28Si 中自旋的光学控制和读出在量子信息中的应用
  • 批准号:
    462549-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Optical control and readout of spins in enriched 28Si for applications in quantum information
富集 28Si 中自旋的光学控制和读出在量子信息中的应用
  • 批准号:
    462549-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
  • 批准号:
    22302168
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
Lagrange网络实用同步的不连续控制研究
  • 批准号:
    61603174
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
  • 批准号:
    81172643
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
  • 批准号:
    81070069
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
  • 批准号:
    10972233
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
  • 批准号:
    30900646
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
  • 批准号:
    10321002
  • 财政年份:
    2020
  • 资助金额:
    $ 5.1万
  • 项目类别:
Superconducting weak links in next generation ultrafast and low power electronics for control and readout of quantum resonators arrays
用于控制和读出量子谐振器阵列的下一代超快低功率电子器件中的超导薄弱环节
  • 批准号:
    2813045
  • 财政年份:
    2020
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Studentship
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
  • 批准号:
    10264612
  • 财政年份:
    2020
  • 资助金额:
    $ 5.1万
  • 项目类别:
Engineering control and readout of superconducting qubits
超导量子位的工程控制和读出
  • 批准号:
    2431604
  • 财政年份:
    2020
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Studentship
Readout and control of spatiotemporal neuronal codes for behavior
行为时空神经元代码的读出和控制
  • 批准号:
    10231062
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
Control and readout of nuclear spin quantum many-body states
核自旋量子多体态的控制和读出
  • 批准号:
    18K18726
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Readout and control of spatiotemporal neuronal codes for behavior
行为时空神经元代码的读出和控制
  • 批准号:
    10618093
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
Readout and control of spatiotemporal neuronal codes for behavior
行为时空神经元代码的读出和控制
  • 批准号:
    9983214
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
Optical control and readout of spins in enriched 28Si for applications in quantum information
富集 28Si 中自旋的光学控制和读出,用于量子信息应用
  • 批准号:
    RGPIN-2014-04651
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
    Discovery Grants Program - Individual
Readout and control of spatiotemporal neuronal codes for behavior
行为时空神经元代码的读出和控制
  • 批准号:
    10456138
  • 财政年份:
    2018
  • 资助金额:
    $ 5.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了