Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches

复杂和简单流体湍流中的能量守恒:机制和新方法

基本信息

  • 批准号:
    RGPIN-2014-04903
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

When flow in a pipe or channel transitions from the laminar state to turbulence, its friction drag increases abruptly: i.e., energy dissipation is much higher in the latter. Turbulence, meanwhile, is ubiquitous in engineering applications; common examples include pipeline oil transferring, district heating/cooling systems, and the propulsion of ships, airplanes and vehicles. Techniques for turbulent drag reduction (DR) can therefore bring about massive benefit both economically (lower cost) and environmentally (less consumption of natural resources and less greenhouse gas emissions). Substantial DR - up to 80% - can be achieved by simply dissolving polymer additives into the fluid. Although polymers are not always permissible in practical applications, understanding of their DR effect will inspire new designs of flow-control techniques for reaching comparable levels of energy saving in simple fluids (without polymers). The most prominent problem in this area is the so-called maximum drag reduction (MDR): a universal asymptotic limit that bounds the level of DR reached by all different polymer solutions. Despite decades of research, MDR has remained the most important unsolved problem in the area of viscoelastic turbulence. Revealing its mechanism is not only of great fundamental interest, a clear picture of the dynamics in polymer solutions near the MDR regime is also pivotal for future developments in DR techniques in general. The proposed program focuses on the numerical computation of DR in turbulence, with a short-term goal set at the mechanism of MDR. The approaches we will take are inspired by a new conceptual framework proposed in our recent studies of simplified model flows. In addition to introducing a distinct perspective to MDR research, the framework also offers consistent explanations for all qualitative observations about MDR, showing great promise of guiding future research. Building on this progress, our plan divides into two directions: one aims at constructing a mechanistic depiction of MDR dynamics; the other focuses on validating our physical understanding in turbulence at realistic scales. Progress along this path will prepare us for our long-term goal: developing next-generation techniques for high levels of DR in simple Newtonian fluids. Polymers are insoluble, prohibited or undesirable in many situations; techniques for DR in simple fluids can thus reach a much broader range of applications. The level of energy saving achieved by existing techniques of such kind is however much lower than that of polymers. With better understanding of polymeric turbulence near MDR, new approaches can be envisioned in which the role of polymers is imitated so that turbulent dynamics can be tethered to MDR in the absence of these additives. Finally, the program is also designed with the training of highly qualified personnel (HQP) in mind. The proposed research breaks down into several projects for multiple students at both the graduate and undergraduate levels. Students working on these projects will build a solid background in fluid dynamics, polymer physics, rheology and applied mathematics. Meanwhile they will also receive systematic training in numerical computation and algorithm development. In addition to the academia, these skills are highly valued in a broad range of industrial sectors, especially the petroleum, chemical and manufacturing industries.
当管道或通道中的流动从层流状态转变为湍流时,其摩擦阻力突然增加:即,后者的能量耗散要高得多。与此同时,湍流在工程应用中无处不在;常见的例子包括管道输油、区域供暖/冷却系统以及船舶、飞机和车辆的推进。因此,湍流减阻(DR)技术可以带来巨大的经济效益(降低成本)和环境效益(减少自然资源消耗和温室气体排放)。通过简单地将聚合物添加剂溶解到流体中,可以实现高达80%的显著DR。虽然聚合物在实际应用中并不总是允许的,但对其DR效应的理解将激发新的流量控制技术设计,以在简单流体(不含聚合物)中达到可比的节能水平。 在这方面最突出的问题是所谓的最大减阻(MDR):一个普遍的渐近极限,限制所有不同的聚合物溶液达到的DR水平。尽管经过几十年的研究,MDR仍然是粘弹性湍流领域中最重要的未解决的问题。揭示其机制不仅具有重大的根本意义,而且清楚地了解MDR机制附近聚合物溶液中的动力学对于DR技术的未来发展也至关重要。 该计划的重点是湍流DR的数值计算,与MDR的机制设定为短期目标。我们将采取的方法的灵感来自于我们最近的简化模型流的研究中提出的一个新的概念框架。除了引入一个独特的视角MDR研究,该框架还提供了一致的解释,所有定性观察MDR,显示出很大的希望,指导未来的研究。基于这一进展,我们的计划分为两个方向:一个旨在构建MDR动力学的机械描述;另一个侧重于验证我们在现实尺度上对湍流的物理理解。 沿着这条道路的进展将为我们的长期目标做好准备:开发下一代技术,在简单的牛顿流体中实现高水平的DR。在许多情况下,聚合物是不溶性的、禁用的或不受欢迎的;因此,在简单流体中进行DR的技术可以达到更广泛的应用范围。然而,通过这种现有技术实现的节能水平远低于聚合物。随着对MDR附近聚合物湍流的更好理解,可以设想新的方法,其中聚合物的作用被模仿,使得湍流动力学可以在没有这些添加剂的情况下被拴系到MDR。 最后,该计划的设计也考虑到了高素质人才(HQP)的培训。拟议的研究分为几个项目,为多个学生在研究生和本科生水平。从事这些项目的学生将在流体动力学,聚合物物理学,流变学和应用数学方面建立坚实的背景。同时,他们还将接受系统的数值计算和算法开发培训。除了学术界,这些技能在广泛的工业部门,特别是石油,化学和制造业中受到高度重视。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xi, Li其他文献

Microscopic void distribution of 3D printed polymer composites with different printing direction
  • DOI:
    10.1016/j.matlet.2023.134236
  • 发表时间:
    2023-03-21
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Liao, Binbin;Yang, Haoming;Xi, Li
  • 通讯作者:
    Xi, Li
Current-induced magnetization switching in Pt/Co/Ta with interfacial decoration by insertion of Cr to enhance perpendicular magnetic anisotropy and spin-orbit torques
Pt/Co/Ta 中的电流感应磁化强度翻转,通过插入 Cr 进行界面装饰,以增强垂直磁各向异性和自旋轨道扭矩
  • DOI:
    10.7567/apex.11.013001
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Cui, Baoshan;Chen, Shiwei;Xi, Li
  • 通讯作者:
    Xi, Li
Effect of inserting a non-metal C layer on the spin-orbit torque induced magnetization switching in Pt/Co/Ta structures with perpendicular magnetic anisotropy
插入非金属C层对垂直磁各向异性Pt/Co/Ta结构中自旋轨道扭矩引起的磁化翻转的影响
  • DOI:
    10.1063/1.4979468
  • 发表时间:
    2017-03-27
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Li, Dong;Cui, Baoshan;Xi, Li
  • 通讯作者:
    Xi, Li
A protein kinase C α and β inhibitor blunts hyperphagia to halt renal function decline and reduces adiposity in a rat model of obesity-driven type 2 diabetes.
  • DOI:
    10.1038/s41598-023-43759-7
  • 发表时间:
    2023-10-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wang, Ju;Casimiro-Garcia, Agustin;Johnson, Bryce G.;Duffen, Jennifer;Cain, Michael;Savary, Leigh;Wang, Stephen;Nambiar, Prashant;Lech, Matthew;Zhao, Shanrong;Xi, Li;Zhan, Yutian;Olson, Jennifer;Stejskal, James A.;Lin, Hank;Zhang, Baohong;Martinez, Robert V.;Masek-Hammerman, Katherine;Schlerman, Franklin J.;Dower, Ken
  • 通讯作者:
    Dower, Ken
Electroencephalography-Based Neuroemotional Responses in Cognitively Normal and Cognitively Impaired Elderly by Watching the Ardisia mamillata Hance with Fruits and without Fruits.

Xi, Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xi, Li', 18)}}的其他基金

Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
  • 批准号:
    RGPIN-2022-04720
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Circular economy for vinyl plastics
乙烯基塑料的循环经济
  • 批准号:
    570505-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Antiviral polymers as surface coating materials for curbing the spread of COVID-19
抗病毒聚合物作为表面涂层材料用于遏制 COVID-19 的传播
  • 批准号:
    553988-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Computational molecular engineering for the development of durable and high-perfornamce plasticizers
用于开发耐用高性能增塑剂的计算分子工程
  • 批准号:
    514051-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Computational molecular engineering for the development of durable and high-perfornamce plasticizers
用于开发耐用高性能增塑剂的计算分子工程
  • 批准号:
    514051-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
  • 批准号:
    10090949
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    EU-Funded
Designing a bio-sensitive visualisation for saltmarsh conservation
设计用于盐沼保护的生物敏感可视化
  • 批准号:
    AH/Z50533X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
PFI-RP: Crop Seed Shaped Pellets for Planting Multi-Species Conservation Habitats with Standard Planting Equipment
PFI-RP:作物种子形状颗粒,用于使用标准种植设备种植多物种保护栖息地
  • 批准号:
    2345771
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
The Making of a University Hub for Basic Cultural Anthropological Research Related to Cultural and Biodiversity Conservation
建立与文化和生物多样性保护相关的基础文化人类学研究大学中心
  • 批准号:
    2309069
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Sustainable Business Models for Marine Conservation
海洋保护的可持续商业模式
  • 批准号:
    DE240100092
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Early Career Researcher Award
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Forest Conservation by Payment for Ecosystem Services (PES): A Comprehensive Analysis of the Policy Outcome to Subsidize the Cooking Fuel in Teknaf-Ukhia, Bangladesh
通过生态系统服务付费 (PES) 进行森林保护:孟加拉国 Teknaf-Ukhia 烹饪燃料补贴政策结果的综合分析
  • 批准号:
    24K20975
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
IUSE: Conservation Principles, Illustrated: Analyzing the Impact of Informal Visual Learning Tools on Educational Engineering Through Comics
IUSE:保护原则,图解:通过漫画分析非正式视觉学习工具对教育工程的影响
  • 批准号:
    2235827
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Creating conservation landscapes that effectively safeguard biodiversity
创建有效保护生物多样性的保护景观
  • 批准号:
    FT230100402
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    ARC Future Fellowships
FishOtlilithPhysio - Fish Otolith Physiology, and Implications for Climate Change, Conservation, and Fisheries Management
FishOtlilithPhysio - 鱼类耳石生理学以及对气候变化、保护和渔业管理的影响
  • 批准号:
    EP/Y023730/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了