Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems

可积非线性波动方程、柯西双正交多项式及相关反问题

基本信息

  • 批准号:
    RGPIN-2014-05358
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Integrable equations such the Korteweg de Vries equation arise as approximate model equations in the mathematical description of wave phenomena in fluids, plasmas and optical fibres. They are special by virtue of possessing infinitely many integrals of motion, usually accompanied by deep mathematical structure. In the last two decades a new class of exciting models of this type has been discovered. These new models exhibit several novel features, the central of which is the existence of localized, coherent modes, called peakons, with singular behaviour in the spatial derivative of the profile. The first such model equation-the Camassa-Holm (CH) equation-has been studied extensively by many authors from many different points of view, the most pertinent of which is a realization that the machinery of the classical moment problem provides a powerful tool to analyze more delicate features of this equation. Among the features accessible by this method are steepening of the slope at the time of the collision of peakons and the long time asymptotic behaviour. Another equation from this class which has been in the center of considerable research excitement is the Degasperis-Procesi (DP) equation. It was realized that this equation has, in addition to peakon solutions, also the shock solutions and, very interestingly, the shockpeakon solutions. The accompanying boundary value problem is non-selfadjoint, resulting in a host of new problems and challenges. This boundary value problem was named the cubic string; it is a third order problem with a weight being a measure. The case corresponding to peakons requires that this measure be discrete and for such a case the spectral and the inverse spectral problem were solved by H. Lundmark and the applicant. The solution of the problem involved a combination of ideas going back to T. Stieltjes and to M.G. Krein's study of an inhomogeneous string. The distinct feature of the solution to the inverse problem for the cubic string is the appearance of a new type of polynomials, named Cauchy biorthogonal polynomials in view of the presence of the Cauchy kernel in the biorthogonality relation. It has subsequently been clarified that this type of polynomials replaces orthogonal polynomials when one is dealing with certain type of inverse problems tied to non-selfadjoint boundary value problems. The resulting theory of Cauchy biorthogonal polynomials has undergone a considerable development in the last funding period. The proposed research program is a continuation of the applicant's past work. In part, it is directed at developing a comprehensive map of applications of Cauchy biorthogonal polynomials to: (i) solving inverse problems appearing in a variety of generalizations of CH and DP; (ii) establishing a complete mechanism for the creation of shock peakons in the DP equation and the role of Cauchy biorthogonal polynomials in the transition from peakons to shockpeakons; (iii) solving random two-matrix models with Cauchy kernel; (iv) understanding the scaling laws in Cauchy two-matrix models. Another related objective, although not likely to rely directly on Cauchy biorthogonal polynomials, is to understand the nature of peakon collisions in the b-family (a one parameter deformation of the CH and DP equations).
可积方程(如Korteweg de Vries方程)作为近似模型方程出现在流体、等离子体和光纤中波动现象的数学描述中。它们的特殊之处在于具有无限多的运动积分,通常伴随着深刻的数学结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Szmigielski, Jacek其他文献

Szmigielski, Jacek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Szmigielski, Jacek', 18)}}的其他基金

Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear equations, total positivity and biorthogonal polynomials
可积非线性方程、总正性和双正交多项式
  • 批准号:
    138591-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear equations, total positivity and biorthogonal polynomials
可积非线性方程、总正性和双正交多项式
  • 批准号:
    138591-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

热环境下双螺旋仿生微结构热塑复合材料抗冲击性能及强度理论研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高强铝合金搅拌摩擦焊接头电磁冲击工艺及机理研究
  • 批准号:
    JCZRYB202501251
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
岛礁环境下桨叶型浮式防波堤消波捕能特性及其动力响应研究
  • 批准号:
    2025JJ50256
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于声表面波激励的并联通道流动失稳调控机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
陶瓷-仿生梯度纤维复合防护结构抗弹机理研究
  • 批准号:
    QN25A020006
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
里德堡缀饰玻色-爱因斯坦凝聚中物质波的研究
  • 批准号:
    JCZRLH202500928
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
非线性波方程的临界非线性行为研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
双曲-椭圆耦合方程组非线性波的整体稳定性研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
几类非线性模型的数据驱动局域波解及其动力学行为
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
ZND燃烧方程组的爆轰波动力学研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development of computational algorithms for nonlinear wave analysis based on discrete methods for integrable systems
基于可积系统离散方法的非线性波分析计算算法的开发
  • 批准号:
    18K03435
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了