Peakon integrable nonlinear equations and related approximation problems: the distributional approach.

Peakon 可积非线性方程和相关逼近问题:分布方法。

基本信息

  • 批准号:
    RGPIN-2019-04051
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Integrable partial differential equations arose as approximate model equations in the mathematical description of wave phenomena in fluids, plasmas and optical fibres. They are special in that they possess infinitely many integrals of motion, a sign of a rich mathematical structure. P. Lax pointed out at the very early stage of research into this special class of partial differential equations that the underlying reason for the existence of infinitely many conserved quantities is that one can associate with each of these equations a linear operator which undergoes an isospectral (spectrum preserving) deformation responsible for the existence of a large family of constants of motion. This point of view eventually resulted in the formulation of a paradigm of integrable systems, which puts the so called Lax pairs front and centre of the theory. This point of view has its geometric counterpart in a theory of flat connections, as well as, in a symplectic approach based on the presence of bi-Hamiltonian structures. The current proposal focuses on the first interpretation, using Lax pairs and their isospectral deformations, with one significant generalization: the Lax pairs are distributional (Schwartz) Lax pairs. The main impetus for this line of research comes from a class of exciting integrable models discovered over last two decades which exhibit several novel features, the central of which is the existence of localized coherent modes, called peakons, with singular behaviour in the spatial derivative of the profile. The peakon equations result from a careful consideration of distributional Lax pairs leading to interesting and unexpected results, i.e. forcing a particular type of multiplication rules for certain classes of distributions with singular support, leading to a relevant extension of “Lax integrable” equations into the domain of significant non-smoothness for which the classical Lax formalism fails. The general objectives of the proposed program are: (1) to establish a complete theory of isospectral deformations of the n-th order inhomogeneous strings (n=2, n=3, n=4, corresponding to a classical string, a cubic string, an Euler-Bernoulli beam, respectively) and the role of, possibly generalized, Cauchy biorthogonal polynomials for n greater than 3. This, in particular, would address the inverse problem for the Euler-Bernoulli beam which is of significance elsewhere in view of its relevance to the geophysical inverse problem; (2) to classify peakon distributional Lax pairs and pertinent boundary value problems; (3) to build a theory of mixed Hermite-Pade approximations of the so called Nikishin systems, generalizing earlier results on the Nikishin systems with two measures originating in the cubic string problem formulated by the applicant for the Degasperis-Procesi equation and establish a link between these approximations and inverse problems for n-order inhomogeneous strings.
可积偏微分方程作为近似模型方程出现在流体、等离子体和光纤中波动现象的数学描述中。 它们的特殊之处在于它们拥有无穷多个运动积分,这是丰富的数学结构的标志。 P.拉克斯在研究这类特殊的偏微分方程的早期阶段就指出,存在无穷多个守恒量的根本原因是,人们可以将这些方程中的每一个与一个线性算子联系起来,该算子经历了等谱(谱保持)变形,从而导致了一个大的运动常数家族的存在。 这一观点最终导致了可积系统范式的形成,它将所谓的Lax对置于理论的前沿和中心。这一观点在平面连接理论中有其几何对应物,以及基于双哈密顿结构存在的辛方法。 目前的建议集中在第一种解释,使用Lax对和它们的等谱变形,有一个重要的推广:Lax对是分布(施瓦茨)Lax对。 这一系列研究的主要动力来自于过去二十年中发现的一类令人兴奋的可积模型,这些模型具有几个新的特征,其中的核心是存在局部相干模式,称为峰子,在空间导数中具有奇异行为。 峰子方程的结果,从一个仔细考虑的分布拉克斯对导致有趣的和意想不到的结果,即迫使特定类型的乘法规则的某些类的分布与奇异的支持,导致相关的扩展“拉克斯可积”方程到域的显着非光滑的经典拉克斯形式主义失败。 拟议方案的总体目标是: (1)建立一个完整的理论的等谱变形的n阶非均匀弦(n=2,n=3,n=4,对应于一个经典的字符串,一个立方字符串,一个Euler-Bernoulli梁,分别)和作用,可能广义,柯西双正交多项式n大于3。 特别是,这将解决欧拉-伯努利波束的逆问题,鉴于其与地球物理逆问题的相关性,这在其他地方具有重要意义; (2)对Peakon分布Lax对及相关边值问题进行分类; (3)建立所谓的Nikishin系统的混合Hermite-Pade近似的理论,用源于由申请人为Degasperis-Procesi方程制定的立方弦问题的两个测量来推广Nikishin系统的早期结果,并建立这些近似与n阶非均匀弦的逆问题之间的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Szmigielski, Jacek其他文献

Szmigielski, Jacek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Szmigielski, Jacek', 18)}}的其他基金

Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2016
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear equations, total positivity and biorthogonal polynomials
可积非线性方程、总正性和双正交多项式
  • 批准号:
    138591-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear equations, total positivity and biorthogonal polynomials
可积非线性方程、总正性和双正交多项式
  • 批准号:
    138591-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Challenges in Nonlinear Waves and Integrable Systems
非线性波和可积系统的新挑战
  • 批准号:
    2106488
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear integrable systems and representation theory -revisited-
非线性可积系统和表示论-重温-
  • 批准号:
    21K03208
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable turbulence and rogue waves: semi-classical nonlinear Schrödinger equation framework
可积湍流和异常波:半经典非线性薛定谔方程框架
  • 批准号:
    EP/R00515X/2
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Research Grant
Development of computational algorithms for nonlinear wave analysis based on discrete methods for integrable systems
基于可积系统离散方法的非线性波分析计算算法的开发
  • 批准号:
    18K03435
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable nonlinear wave equations, Cauchy biorthogonal polynomials and related inverse problems
可积非线性波动方程、柯西双正交多项式及相关反问题
  • 批准号:
    RGPIN-2014-05358
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable turbulence and rogue waves: semi-classical nonlinear Schrödinger equation framework
可积湍流和异常波:半经典非线性薛定谔方程框架
  • 批准号:
    EP/R00515X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了