Development and application of new methods for computing rovibrational spectra and rate constants
计算振动谱和速率常数新方法的开发和应用
基本信息
- 批准号:RGPIN-2014-05676
- 负责人:
- 金额:$ 6.12万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is in theoretical chemistry and addresses the motion of atoms in molecules and during reactions. The motion of atoms is easy to calculate and understand if they remain confined very close to an equilibrium geometry. Real chemistry, however, involves large amplitude motion and the making and breaking of bonds. To understand, at a detailed level, the motion of atoms, one must apply the laws of quantum mechanics and solve the Schrödinger equation by representing wavefunctions (functions from which one can calculate all observable properties) in terms of basis functions and using methods of linear algebra to compute observables. The calculations are difficult because the required number of functions and therefore the size of the matrices and vectors to be manipulated is large. I shall develop new ideas for choosing better basis functions, to reduce the number of functions required. From solutions of the Schrödinger equation one can deduce properties of molecules and interpret experimental results.
Our work will provide information necessary for understanding how molecules in the atmosphere absorb and emit radiation, which is important for modelling global warming. Understanding and combating global warming is one of the most important problems of our time. We will study greenhouse gas molecules (ozone, water dimer, methane) and molecules of interest in astrophysics (e.g. CH5+). The greenhouse effect is the rise in temperature that the Earth experiences because gases in the atmosphere trap energy from the sun. A better understanding of greenhouse gases will help us to know how they absorb heat and hence to what extent they are responsible for global warming. Water is an important greenhouse gas and understanding the spectrum of water dimer may be important. This is difficult in the lab because the spectra of water monomer and dimer overlap. The water dimer is also prototype system for understanding hydrogen bonding, which is important in many biological molecules. We shall also study the propargyl radical which is important in combustion. The new techniques we propose developing will enable scientists to understand the motion of atoms in hydrogen bonded molecules (e.g. water dimer). Hydrogen bonds play a very important role in nature. For example, the structure of DNA is determined by hydrogen bonds. Established computational methods for studying the motion of atoms are inadequate for hydrogen bonded molecules.
We will also develop methods to calculate rate constants. To model any complex reacting system one requires rate constants for the elementary reactions that are implicated. The development of accurate, dependable methods to calculate such rate constants would enable one to model (for example) combustion and atmospheric chemistry much more reliably.
The computational methods we develop, both those applied to isolated molecules (spectroscopy) and those applied to reactions (rate constants) relate to the motion of molecules. They will help chemists to analysis and understand laboratory data. Numerical methods we develop may also be useful in other areas of science and engineering. E.g., the equations we use to compute rate constants are also used to study conductivity of molecules.
In the course of doing this research, HQP will be trained in computational chemistry, numerical analysis and computer science and profit from opportunities provided by numerous international collaborations. Because computational science is important for maintaining health and prosperity it is critical that Canada train scientists to both develop and use modern numerical methods and modern computers.
拟议的研究是在理论化学和解决原子在分子和反应过程中的运动。 如果原子的运动被限制在非常接近平衡几何的位置,那么它们的运动就很容易计算和理解。 然而,真实的化学涉及到大幅度的运动以及键的形成和断裂。 为了在细节层面上理解原子的运动,我们必须应用量子力学定律,并通过用基函数表示波函数(可以计算所有可观测性质的函数)并使用线性代数方法计算可观测量来求解薛定谔方程。 计算是困难的,因为所需的函数的数量以及因此要操纵的矩阵和向量的大小是大的。 我将发展新的想法来选择更好的基函数,以减少所需函数的数量。 从薛定谔方程的解可以推导出分子的性质并解释实验结果。
我们的工作将为理解大气中的分子如何吸收和释放辐射提供必要的信息,这对于模拟全球变暖非常重要。 理解和应对全球变暖是我们这个时代最重要的问题之一。 我们将研究温室气体分子(臭氧,水二聚体,甲烷)和天体物理学中感兴趣的分子(例如CH5+)。 温室效应是地球经历的温度上升,因为大气中的气体捕获来自太阳的能量。 更好地了解温室气体将有助于我们了解它们如何吸收热量,从而在多大程度上对全球变暖负责。 水是一种重要的温室气体,了解水二聚体的光谱可能是重要的。 这在实验室中是困难的,因为水单体和二聚体的光谱重叠。 水二聚体也是理解氢键的原型系统,氢键在许多生物分子中很重要。 我们还将研究炔丙基自由基,它在燃烧中很重要。 我们建议开发的新技术将使科学家能够理解氢键分子(例如水二聚体)中原子的运动。 氢键在自然界中起着非常重要的作用。 例如,DNA的结构由氢键决定。 已有的研究原子运动的计算方法不足以研究氢键分子。
我们还将开发计算速率常数的方法。 为了模拟任何复杂的反应系统,需要涉及的基元反应的速率常数。 发展精确、可靠的方法来计算这些速率常数将使人们能够更可靠地模拟(例如)燃烧和大气化学。
我们开发的计算方法,无论是应用于孤立分子(光谱学)的方法还是应用于反应(速率常数)的方法,都与分子的运动有关。 它们将帮助化学家分析和理解实验室数据。 我们开发的数值方法也可能在科学和工程的其他领域有用。 例如,在一个示例中, 我们用来计算速率常数的方程也可以用来研究分子的电导率。
在进行这项研究的过程中,HQP将接受计算化学,数值分析和计算机科学方面的培训,并从众多国际合作提供的机会中获益。 由于计算科学对保持健康和繁荣很重要,加拿大必须培训科学家开发和使用现代数值方法和现代计算机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrington, Tucker其他文献
Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: Uracil and naphthalene
使用迭代本征解算器和交织的等级约简来计算具有十多个原子的分子的振动光谱:尿嘧啶和萘
- DOI:
10.1063/1.5039147 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Thomas, Phillip S.;Carrington, Tucker;Agarwal, Jay;Schaefer, Henry F. - 通讯作者:
Schaefer, Henry F.
Carrington, Tucker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carrington, Tucker', 18)}}的其他基金
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
- 批准号:
RGPIN-2019-04357 - 财政年份:2022
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair In Computational Quantum Dynamics
加拿大计算量子动力学研究主席
- 批准号:
CRC-2013-00067 - 财政年份:2021
- 资助金额:
$ 6.12万 - 项目类别:
Canada Research Chairs
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
- 批准号:
RGPIN-2019-04357 - 财政年份:2021
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
- 批准号:
RGPIN-2019-04357 - 财政年份:2020
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Computational Quantum Dynamics
加拿大计算量子动力学研究主席
- 批准号:
CRC-2013-00067 - 财政年份:2020
- 资助金额:
$ 6.12万 - 项目类别:
Canada Research Chairs
Canada Research Chair in Computational Quantum Dynamics
加拿大计算量子动力学研究主席
- 批准号:
CRC-2013-00067 - 财政年份:2019
- 资助金额:
$ 6.12万 - 项目类别:
Canada Research Chairs
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
- 批准号:
RGPIN-2019-04357 - 财政年份:2019
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
Development and application of new methods for computing rovibrational spectra and rate constants
计算振动谱和速率常数新方法的开发和应用
- 批准号:
RGPIN-2014-05676 - 财政年份:2018
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Computational Quantum Dynamics
加拿大计算量子动力学研究主席
- 批准号:
CRC-2013-00067 - 财政年份:2018
- 资助金额:
$ 6.12万 - 项目类别:
Canada Research Chairs
Development and application of new methods for computing rovibrational spectra and rate constants
计算振动谱和速率常数新方法的开发和应用
- 批准号:
RGPIN-2014-05676 - 财政年份:2017
- 资助金额:
$ 6.12万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
- 批准号:82372089
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
网格中以情境为中心的应用自动化研究
- 批准号:60703054
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New molecular shapes from strained aromatic foldamer macrocycles and their application to development of PPI inhibitors
应变芳香折叠大环化合物的新分子形状及其在 PPI 抑制剂开发中的应用
- 批准号:
23KK0134 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of a novel depot delivery system for a glaucoma therapeutic
开发用于青光眼治疗的新型储库递送系统
- 批准号:
10699791 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
UofL RBL Operations, Workforce Development and Pandemic Preparedness Research
伦敦大学 RBL 运营、劳动力发展和流行病防范研究
- 批准号:
10793918 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Design, Development, and Application of New Catalytic Systems Based on 3D Aromatic Cluster Molecules
基于3D芳香族簇分子的新型催化体系的设计、开发及应用
- 批准号:
23H01960 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Supplement to Support the Development of a New Multiplexed Imaging Tool using Raman Spectroscopy for Breast Cancer
支持开发使用拉曼光谱治疗乳腺癌的新型多重成像工具的补充材料
- 批准号:
10839117 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
The development of the Clinical Picture Maker, a novel video platform to aid the diagnosis and treatment of SCN2A-related disorders, and other rare diseases.
开发了 Clinical Picture Maker,这是一个新型视频平台,可帮助诊断和治疗 SCN2A 相关疾病和其他罕见疾病。
- 批准号:
10759930 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
IND-enabling development of a long-duration antagonist to treat opioid overdose
能够开发长效拮抗剂来治疗阿片类药物过量的 IND
- 批准号:
10786015 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Development, Elucidation, and Application of New Principles in Stereoselective Catalysis
立体选择性催化新原理的开发、阐明和应用
- 批准号:
10622995 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Development of a Novel Medication for Alcohol Use Disorder with an Active IND Dual Inhibitor of T-Type Calcium Channel and Soluble Epoxide Hydrolase
使用 T 型钙通道和可溶性环氧化物水解酶的活性 IND 双重抑制剂开发治疗酒精使用障碍的新型药物
- 批准号:
10815882 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Preclinical and Early Clinical Development of a Novel Drug for On-Demand Voiding
按需排尿新药的临床前和早期临床开发
- 批准号:
10875778 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别: