Mixed Methods for Video Games User Research: Enhancing Qualitative Evaluations with Quantitative Data
视频游戏用户研究的混合方法:利用定量数据增强定性评估
基本信息
- 批准号:RGPIN-2014-05763
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of my research is to develop quick, cost-effective and easy-to-understand methods and frameworks for collecting, analysing and reporting findings from mixed gameplay datasets. The aim is to enhance evaluation of player experience to suit the game development cycle towards providing a formative feedback for game developers. The work proposed here is divided into two research elements: First, by exploring current approaches I plan to develop mixed methods that improve effectiveness and efficiency of qualitative and quantitative data collection and analysis. Second, I plan to advance frameworks for meaningful visualisation of player experience analysis, tying qualitative and quantitative data together. Hence the outcome of this research will include applicable tools and methods as well as best practices on optimisation of human-computer interaction (HCI) methods for the game industry.
As a result of many changes in video games development (such as new business models, widening player demographics and new interaction modes) the demand for studies dealing with users and their interactions with video games has grown in the past few years. Games user research (GUR) is a relatively new field using evaluation methods from HCI and psychology aiming to improve game design by providing sufficient information about gameplay for designers to draw the best conclusion possible for optimising their designs. Although standard HCI evaluation methods have made progress in understanding the usability of productivity applications, the specific characteristics of video games (such as frustration being allowed as long as it is part of the game design) mean that many established methods of user research cannot be applied in the same way for GUR. Moreover, games user researchers are usually dealing with massive and complex datasets. Thus, one of the challenges is to improve the efficiency of data gathering approaches and in making the interpretation of these data meaningful in terms of better understanding of player experience and facilitating design decisions.
My research focuses to answer these shortfalls by developing tools and frameworks for analysing player experience using systematic and scientific approaches. This proposal tackles an important problem in applied GUR setting, which is to improve qualitative evaluation of player experience by developing a quick, cost-effective and easy-to-understand methods that integrates quantitative and qualitative data. Major outcomes of this research will include novel approaches for player experience evaluation as well as best practices and game design guidelines generated based on results from practical case studies and scientific experiments of player experience.
I use both qualitative and quantitative research approaches, but I have more interest toward qualitative research and practical case studies where I can get involved with the complexity and data richness of real world. This proposal can be seen as a continuation to my previous works on enhancing games user research methodologies in collaboration with game developers. I believe high involvement with professionals and focusing on real world cases brings strength to research questions and findings.
If this proposal is successful I expect to train up to ten HQPs, including Ph.D. students, Master’s and Undergraduate research assistants through participation in my research program.
我的研究目标是开发快速,具有成本效益和易于理解的方法和框架,用于收集,分析和报告来自混合游戏数据集的结果。其目的是加强对玩家体验的评估,以适应游戏开发周期,为游戏开发人员提供形成性反馈。这里提出的工作分为两个研究要素:首先,通过探索目前的方法,我计划开发混合方法,提高定性和定量数据收集和分析的有效性和效率。其次,我计划推进有意义的玩家体验分析可视化框架,将定性和定量数据结合在一起。因此,这项研究的成果将包括适用的工具和方法,以及优化游戏行业人机交互(HCI)方法的最佳实践。
由于视频游戏开发的许多变化(如新的商业模式,扩大玩家人口统计和新的交互模式),在过去几年中,对用户及其与视频游戏交互的研究需求有所增长。游戏用户研究(GUR)是一个相对较新的领域,使用HCI和心理学的评估方法,旨在通过为设计师提供足够的游戏信息来改进游戏设计,从而得出优化设计的最佳结论。虽然标准的人机交互评估方法在理解生产力应用程序的可用性方面取得了进展,但视频游戏的特定特性(例如只要是游戏设计的一部分,就允许挫折)意味着许多既定的用户研究方法不能以同样的方式应用于GUR。此外,游戏用户研究人员通常要处理大量复杂的数据集。因此,挑战之一是提高数据收集方法的效率,并使这些数据的解释在更好地理解玩家体验和促进设计决策方面有意义。
我的研究重点是通过开发工具和框架来解决这些不足,这些工具和框架用于使用系统和科学的方法分析玩家体验。该建议解决了应用GUR设置中的一个重要问题,即通过开发一种快速,具有成本效益且易于理解的方法来提高对玩家体验的定性评估,该方法将定量和定性数据相结合。这项研究的主要成果将包括玩家体验评估的新方法,以及根据实际案例研究和玩家体验科学实验的结果产生的最佳实践和游戏设计指南。
我使用定性和定量研究方法,但我对定性研究和实际案例研究更感兴趣,在那里我可以参与真实的世界的复杂性和数据丰富性。这个建议可以被看作是我以前与游戏开发者合作加强游戏用户研究方法的工作的延续。我相信与专业人士的高度参与和对真实的世界案例的关注会给研究问题和发现带来力量。
如果这个建议是成功的,我希望培训多达10个HQP,包括博士。学生,硕士和本科研究助理通过参与我的研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MirzaBabaei, Pejman其他文献
MirzaBabaei, Pejman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MirzaBabaei, Pejman', 18)}}的其他基金
Data-driven gameplay experience evaluation: Leveraging multimodal data in Games User Research
数据驱动的游戏体验评估:在游戏用户研究中利用多模态数据
- 批准号:
RGPIN-2021-03500 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Assessing the impact of interaction design on user experience in cross-platform VR games
评估跨平台 VR 游戏中交互设计对用户体验的影响
- 批准号:
561331-2020 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Data-driven gameplay experience evaluation: Leveraging multimodal data in Games User Research
数据驱动的游戏体验评估:在游戏用户研究中利用多模态数据
- 批准号:
RGPIN-2021-03500 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mixed Methods for Video Games User Research: Enhancing Qualitative Evaluations with Quantitative Data
视频游戏用户研究的混合方法:利用定量数据增强定性评估
- 批准号:
RGPIN-2014-05763 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mixed Methods for Video Games User Research: Enhancing Qualitative Evaluations with Quantitative Data
视频游戏用户研究的混合方法:利用定量数据增强定性评估
- 批准号:
RGPIN-2014-05763 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Developing Guidelines for Improving Player Retention in Multiplayer Games by Designing Experiences Beyond Gameplay
通过设计游戏之外的体验来制定提高多人游戏玩家保留率的指南
- 批准号:
521639-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Developing design guidelines for visual feedback in touch- and cursor-driven interaction schemes
制定触摸和光标驱动交互方案中视觉反馈的设计指南
- 批准号:
516250-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Plus Grants Program
Mixed Methods for Video Games User Research: Enhancing Qualitative Evaluations with Quantitative Data
视频游戏用户研究的混合方法:利用定量数据增强定性评估
- 批准号:
RGPIN-2014-05763 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Porting core interaction controls between touch- and cursor-driven schemes to game console controllers
将触摸和光标驱动方案之间的核心交互控制移植到游戏机控制器
- 批准号:
500448-2016 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Mixed Methods for Video Games User Research: Enhancing Qualitative Evaluations with Quantitative Data
视频游戏用户研究的混合方法:利用定量数据增强定性评估
- 批准号:
RGPIN-2014-05763 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Video-Based Fall Detection and Medical Image Denoising Methods
基于视频的跌倒检测和医学图像去噪方法
- 批准号:
2767749 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Development of video teaching materials for practical training and experiments using animals and their evaluation methods
动物实践训练和实验视频教材的开发及其评价方法
- 批准号:
21H00911 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deep State Space Modeling Methods for Video Understanding
用于视频理解的深层状态空间建模方法
- 批准号:
19K12039 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced relative depth-map generation methods for 2D to 3D image and video conversion
用于 2D 到 3D 图像和视频转换的高级相对深度图生成方法
- 批准号:
311626-2013 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scaling up eVisits (Home Video Visits) for ambulatory care in Kingston Health Sciences Center, A mixed-methods implementation study
扩大金斯顿健康科学中心门诊护理的 eVisits(家庭视频就诊),一项混合方法实施研究
- 批准号:
415281 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
Mixed Methods for Video Games User Research: Enhancing Qualitative Evaluations with Quantitative Data
视频游戏用户研究的混合方法:利用定量数据增强定性评估
- 批准号:
RGPIN-2014-05763 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mixed Methods for Video Games User Research: Enhancing Qualitative Evaluations with Quantitative Data
视频游戏用户研究的混合方法:利用定量数据增强定性评估
- 批准号:
RGPIN-2014-05763 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computer-Assisted Video Analysis Methods for Understanding Underrepresented Student Participation and Learning in Collaborative Learning Environments
用于了解协作学习环境中代表性不足的学生参与和学习的计算机辅助视频分析方法
- 批准号:
1842220 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Development of methods for video corpus construction and time series annotation for video scene retrieval
视频场景检索的视频语料库构建和时间序列标注方法的开发
- 批准号:
17K12687 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of new methods for estimating/ improving pedestrian safety based on video analytics
开发基于视频分析的估计/改善行人安全的新方法
- 批准号:
518305-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Plus Grants Program