Function and Mechanism of RNA Modification

RNA修饰的功能和机制

基本信息

  • 批准号:
    RGPIN-2014-05954
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Ribosomes are fascinating molecular machines that synthesize all proteins. As such, ribosomes are a prime example of a nanoassembler, a machine capable of constructing a wide range of functional parts on the nanometer scale. The ribosome consists of two subunits each containing large, intricately folded RNAs (ribonucleic acids) and numerous interwoven proteins, raising the question of how all these components come together. It is the long-term goal of my research program to understand ribosome biogenesis as a paradigm for the assembly of complex RNA-protein machines. Ribosome formation begins with the transcription, modification and folding of ribosomal RNA (rRNA). In the past years, I have focused on the molecular mechanism of pseudouridine formation in tRNA as a simple model system for RNA modification. I am now proposing to extend these studies to other tRNA modifications and to rRNA modifications. Using a bacterial model system, we will in particular analyze the interplay of RNA transcription, modification and folding as these processes occur simultaneously and may influence each other during the early stages of ribosome assembly. We apply a combination of biochemical, biophysical and molecular biology techniques asking three main questions: 1. How are pseudouridines and other modifications introduced into transfer RNA? Continuing our previous research, I will assess how pseudouridine synthases bind tRNA and locally unfold this small model RNA. We will also address the slow nature of pseudouridylation catalysis by analyzing potential intermediates, an important step towards identifying the catalytic mechanism of these enzymes. Lastly, we will dissect the kinetics of tRNA methylation and the impact thereof on RNA folding as well as the interplay of methylation and pseudouridylation as the most common RNA modifications. 2. What is the biologically important function of RNA modification enzymes for the bacterial cell? Here, I ask why the bacterial cell has many RNA modification enzymes if most are not essential, and I suggest that their benefit will be most apparent under stress conditions. If so, how do RNA modifications impact ribosome formation and function under stress conditions? Thereby, we will also identify the most critical rRNA modification enzymes for subsequent in vitro studies. Additionally, we test the hypothesis that RNA modification enzymes act as RNA chaperones contributing to RNA folding. 3. How are pseudouridines formed site-specifically in 23S rRNA and how do they contribute to RNA folding and ribosome assembly? I will test the hypothesis that modification enzymes recognize 23S rRNA structure that is folded co-transcriptionally. The establishment of a co-transcriptional 23S rRNA modification system will be the first step towards an in vitro large subunit assembly system, allowing the systematic addition of ribosomal proteins while analyzing RNA modification and folding. My proposed research will provide significant insight (1) into the impact of modification on RNA folding, (2) into the timing and interplay of different RNA modifications, (3) into the cellular function of RNA modification, and (4) into the dependence of RNA folding and modification on transcription. Our studies of short and long bacterial RNAs involved in translation will generate knowledge that will very likely hold true for all organisms as these processes are highly conserved. Ultimately, my research will lead to an experimental system for studying assembly of the large ribosomal subunit in vitro using sophisticated biochemistry experiments. This will also allow manipulation of ribosome assembly with the goal of constructing novel ribosome-based nanoassemblers that will enable the efficient synthesis of novel compounds.
核糖体是合成所有蛋白质的迷人分子机器。因此,核糖体是纳米组装器的一个主要例子,纳米组装器是一种能够在纳米尺度上构建各种功能部件的机器。核糖体由两个亚基组成,每个亚基都含有大的、复杂折叠的RNA(核糖核酸)和许多交织的蛋白质,这就提出了所有这些成分是如何结合在一起的问题。我的研究计划的长期目标是将核糖体生物合成理解为复杂RNA-蛋白质机器组装的范例。 核糖体的形成始于核糖体RNA(rRNA)的转录、修饰和折叠。在过去的几年里,我一直专注于tRNA中假尿苷形成的分子机制,作为RNA修饰的简单模型系统。我现在建议将这些研究扩展到其他tRNA修饰和rRNA修饰。使用细菌模型系统,我们将特别分析RNA转录,修饰和折叠的相互作用,因为这些过程同时发生,并且在核糖体组装的早期阶段可能相互影响。我们应用生物化学,生物物理和分子生物学技术的组合,提出三个主要问题: 1.如何将假尿苷和其他修饰引入转移RNA? 继续我们以前的研究,我将评估假尿苷激酶如何结合tRNA和局部展开这个小的模型RNA。我们还将通过分析潜在的中间体来解决假尿苷化催化的缓慢性质,这是确定这些酶的催化机制的重要一步。最后,我们将剖析tRNA甲基化的动力学及其对RNA折叠的影响,以及甲基化和假尿苷化作为最常见的RNA修饰的相互作用。 2. RNA修饰酶对细菌细胞的生物学重要功能是什么? 在这里,我问为什么细菌细胞有许多RNA修饰酶,如果大多数不是必需的,我认为他们的好处将是最明显的压力条件下。如果是这样的话,那么在应激条件下,RNA修饰是如何影响核糖体的形成和功能的?因此,我们还将确定最关键的rRNA修饰酶,用于后续的体外研究。此外,我们测试的假设,RNA修饰酶作为RNA分子伴侣有助于RNA折叠。 3.假尿苷是如何在23 S rRNA中位点特异性地形成的,它们如何有助于RNA折叠和核糖体组装? 我将检验修饰酶识别共转录折叠的23 S rRNA结构的假设。共转录23 S rRNA修饰系统的建立将是迈向体外大亚基组装系统的第一步,允许在分析RNA修饰和折叠的同时系统地添加核糖体蛋白。 我提出的研究将提供重要的见解(1)修饰对RNA折叠的影响,(2)不同RNA修饰的时间和相互作用,(3)RNA修饰的细胞功能,以及(4)RNA折叠和修饰对转录的依赖性。我们对参与翻译的短和长细菌RNA的研究将产生对所有生物都适用的知识,因为这些过程是高度保守的。最终,我的研究将导致一个实验系统,用于研究组装的核糖体大亚基在体外使用复杂的生物化学实验。这也将允许操纵核糖体组装,目的是构建新的基于核糖体的纳米组装体,从而能够有效合成新化合物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kothe, Ute其他文献

Molecular mechanism of tRNA binding by the Escherichia coli N7 guanosine methyltransferase TrmB.
  • DOI:
    10.1016/j.jbc.2023.104612
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Schultz, Sarah K.;Meadows, Kieran;Kothe, Ute
  • 通讯作者:
    Kothe, Ute
Synergistic interaction network between the snR30 RNP, Utp23, and ribosomal RNA during ribosome synthesis.
  • DOI:
    10.1080/15476286.2022.2078092
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Vos, Timothy J.;Kothe, Ute
  • 通讯作者:
    Kothe, Ute
RNA modification enzyme TruB is a tRNA chaperone
Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis
  • DOI:
    10.1261/rna.2905811
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Wright, Jaden R.;Keffer-Wilkes, Laura C.;Kothe, Ute
  • 通讯作者:
    Kothe, Ute
An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation
  • DOI:
    10.1093/nar/gkt1331
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Friedt, Jenna;Leavens, Fern M. V.;Kothe, Ute
  • 通讯作者:
    Kothe, Ute

Kothe, Ute的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kothe, Ute', 18)}}的其他基金

Mechanism and function of tRNA modification and folding
tRNA修饰和折叠的机制和功能
  • 批准号:
    RGPIN-2020-04965
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanism and function of tRNA modification and folding
tRNA修饰和折叠的机制和功能
  • 批准号:
    RGPAS-2020-00010
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Function and Mechanism of RNA Modification
RNA修饰的功能和机制
  • 批准号:
    RGPIN-2014-05954
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Function and Mechanism of RNA Modification
RNA修饰的功能和机制
  • 批准号:
    RGPIN-2014-05954
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Function and Mechanism of RNA Modification
RNA修饰的功能和机制
  • 批准号:
    RGPIN-2014-05954
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Function and Mechanism of RNA Modification
RNA修饰的功能和机制
  • 批准号:
    RGPIN-2014-05954
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Function and Mechanism of RNA Modification
RNA修饰的功能和机制
  • 批准号:
    RGPIN-2014-05954
  • 财政年份:
    2014
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular mechanism of RNA modification
RNA修饰的分子机制
  • 批准号:
    341996-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular mechanism of RNA modification
RNA修饰的分子机制
  • 批准号:
    341996-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular mechanism of RNA modification
RNA修饰的分子机制
  • 批准号:
    341996-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
  • 批准号:
    11104247
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Function and Mechanism of Coat Protein Complex I in RNA Silencing
外壳蛋白复合物 I 在 RNA 沉默中的功能和机制
  • 批准号:
    2139857
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Function, composition, and mechanism of RNA splicing factories in cardiomyopathy
RNA剪接工厂在心肌病中的功能、组成和机制
  • 批准号:
    10583011
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
Elucidation of the tumor suppression mechanism and physiological function of novel long noncoding RNA transcribed from INK4 locus
阐明INK4基因座转录的新型长非编码RNA的肿瘤抑制机制和生理功能
  • 批准号:
    22K07160
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determining the function and mechanism of the MALAT1 long non-coding RNA in co-transcriptional splicing
确定MALAT1长非编码RNA在共转录剪接中的功能和机制
  • 批准号:
    10090453
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
Mycobacterial small RNA: mechanism and function
分枝杆菌小RNA:机制和功能
  • 批准号:
    418579
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Operating Grants
Mechanism and function of aggregate formation by G-quadruplex RNA-binding protein
G-四链体RNA结合蛋白聚集体形成的机制和功能
  • 批准号:
    20K05704
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determining the function and mechanism of the MALAT1 long non-coding RNA in co-transcriptional splicing
确定MALAT1长非编码RNA在共转录剪接中的功能和机制
  • 批准号:
    9911820
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
Function and Mechanism of RNA Modification
RNA修饰的功能和机制
  • 批准号:
    RGPIN-2014-05954
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Function and mechanism of the mammalian RNA interference response to virus infection
哺乳动物RNA干扰对病毒感染反应的功能和机制
  • 批准号:
    10078853
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
Function and mechanism of the mammalian RNA interference response to virus infection
哺乳动物RNA干扰对病毒感染反应的功能和机制
  • 批准号:
    10318978
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了