New directions in insurance loss modeling, ruin theory and their applications
保险损失建模、破产理论及其应用的新方向
基本信息
- 批准号:RGPIN-2014-05981
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project continues the search for new theoretical and practical results in mathematical risk theory, connecting the area with other insurance or financial areas, such as insurance loss modeling, claim reserving and operational risk management. Realistic scenarios are considered when two or more insurance companies are at play at the same time. Situations where a reinsurer covers parts of the insurer losses, or where two or more insurers try to determine an optimal risk-sharing strategy that minimizes certain risks measures, will be pursued in details. The incurred but not reported loss reserve, and the reported but not settled reserve are important quantities in claim reserving, and will be included in the analysis of the surplus of an insurance company via its classical ruin related measures - the time to ruin, the surplus prior to ruin and the deficit at ruin.
On a more practical side, modeling insurance losses is one of the most challenging problems for actuaries. An important question to be addressed in this proposal is the identification of potential candidates which can be used for fitting loss amounts when dealing with truncated and censored data sets. Due to its very appealing properties (denseness, closure etc.), the mixed Erlang class of distributions will play the main role in developing several fitting algorithms based on the well-known EM method. Potential applications of the proposed Erlang based methods in claim reserving will be studied in detail.
Financial institutions are exposed to a variety of risks such as, strategy risk, reputation risk, market risk, credit risk, business risk, operational risk, liquid risk, and so on. Among these risks, market, credit and operational risks can be easily quantified in practice. In this project we are interested in measuring the operational risk according to the Advanced Measurement Approach (AMA) proposed in the Basel II directive. In order to avoid simulation, we are interested in finding closed form analytic solutions for the distribution of the overall losses associated to the operational risk, taking into consideration certain dependence structures that may occur among the different units of measurement.
该研究项目继续在数学风险理论中寻找新的理论和实践成果,将该领域与其他保险或金融领域联系起来,如保险损失建模,索赔准备金和操作风险管理。现实的情况下,考虑两个或两个以上的保险公司在同一时间发挥作用。对于再保险人承担部分保险人损失的情况,或者两个或两个以上保险人试图确定最佳风险分担策略以最大限度地减少某些风险措施的情况,将进行详细讨论。已发生但未报告的损失准备金和已报告但未结算的准备金是索赔准备金中的重要量,并将通过经典的破产相关度量-破产时间,破产前盈余和破产时赤字-纳入保险公司的盈余分析。
在更实际的方面,对保险损失建模是精算师最具挑战性的问题之一。本提案中要解决的一个重要问题是识别潜在候选项,这些候选项可用于在处理截断和审查的数据集时拟合损失量。由于其非常吸引人的特性(密集,封闭等),混合的Erlang分布类将在开发基于公知的EM方法的几种拟合算法中起主要作用。将详细研究所提出的基于Erlang的方法在索赔准备金中的潜在应用。
金融机构面临着各种风险,如战略风险、声誉风险、市场风险、信用风险、业务风险、操作风险、流动性风险等,其中市场风险、信用风险和操作风险在实践中是很容易量化的。在本项目中,我们感兴趣的是根据巴塞尔II指令中提出的高级度量方法(AMA)来度量操作风险。为了避免模拟,我们有兴趣找到封闭形式的分析解决方案,与操作风险相关的整体损失的分布,考虑到某些依赖结构,可能会发生在不同的测量单位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Badescu, Andrei其他文献
Badescu, Andrei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Badescu, Andrei', 18)}}的其他基金
Modelling, Quantifying and Managing Risk in Insurance and Related Areas
保险及相关领域的风险建模、量化和管理
- 批准号:
RGPIN-2019-04681 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Modelling, Quantifying and Managing Risk in Insurance and Related Areas
保险及相关领域的风险建模、量化和管理
- 批准号:
RGPIN-2019-04681 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Modelling, Quantifying and Managing Risk in Insurance and Related Areas
保险及相关领域的风险建模、量化和管理
- 批准号:
RGPIN-2019-04681 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Modelling, Quantifying and Managing Risk in Insurance and Related Areas
保险及相关领域的风险建模、量化和管理
- 批准号:
RGPIN-2019-04681 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
New directions in insurance loss modeling, ruin theory and their applications
保险损失建模、破产理论及其应用的新方向
- 批准号:
RGPIN-2014-05981 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
New directions in insurance loss modeling, ruin theory and their applications
保险损失建模、破产理论及其应用的新方向
- 批准号:
RGPIN-2014-05981 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
New directions in insurance loss modeling, ruin theory and their applications
保险损失建模、破产理论及其应用的新方向
- 批准号:
RGPIN-2014-05981 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
New directions in insurance loss modeling, ruin theory and their applications
保险损失建模、破产理论及其应用的新方向
- 批准号:
RGPIN-2014-05981 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Knowledge Transfer Network
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant