Algebraic constructions related to marked Riemann surfaces

与标记黎曼曲面相关的代数构造

基本信息

  • 批准号:
    RGPIN-2014-05999
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

A marked Riemann surface (S,M) is formed by a Riemann surface S and a finite set M of “marked” points. Fomin, Shapiro and Thurston constructed a cluster algebra A(S,M) for each marked surface, and the work of Amiot, Cerulli Irelli, Keller, Labardini-Fragoso and Plamondon allows to define the corresponding cluster category C(S,M). The main focus of this research proposal is the interplay between these three objects: the geometry of the Riemann surface with its Mapping Class Group, the cluster algebra with its cluster automorphisms, and the triangulated category C(S,M). An important combinatorial invariant of the marked surface is its flip graph which is formed by all triangulations of (S,M) and where edges are given by the flip of an arc. The same graph occurs as the cluster exchange graph of A(S,M) or C(S,M), with respective notions of mutations which correspond to the flip of an arc. The cluster exchange graph can be endowed with an orientation, and maximal paths in this oriented graph are referred to as maximal green sequences. These maximal green sequences are studied in various contexts, as they give rise to quantum dilogarithm identities and non-commutative Donaldson–Thomas invariants. The case of a pentagon (S,M) yields the classical quantum dilogarithm identity in two skew-commuting variables, and the construction has been generalized by Reineke and Keller to many other cases. Moreover, Riemann surfaces are also studied in mathematical physics, in the context of string theory. In particular, the complete spectrum of a BPS (Bogomol’nyi–Prasad–Sommerfield) particle in string theory can be computed using maximal green sequences. The string theory approach is based on quadratic differentials on S, and recent work of Bridgeland and Smith relates this to studying stability conditions on the triangulated category C(S,M). The main objectives of this research proposal are: • To provide a definition of the cluster category C(S,M) which is independent of any triangulation, using Cohen-Macaulay modules over orders. • To study minimal paths in the exchange graph. • To characterize the existence of maximal green sequences in terms of stability conditions on C(S,M).
一个有标记的黎曼曲面(S,M)是由一个黎曼曲面S和一个有限集M组成的。Fomin,Shapiro和瑟斯顿为每个标记曲面构造了一个簇代数A(S,M),Amiot,Cerulli Irelli,Keller,Labardini-Fragoo和Plamondon的工作允许定义相应的簇范畴C(S,M)。 这一研究方案的重点是这三个对象之间的相互作用:黎曼曲面及其映射类群的几何,簇代数及其簇自同构,三角范畴C(S,M)。 被标记曲面的一个重要组合不变量是它的翻转图,它由(S,M)的所有三角剖分组成,其中边是由圆弧的翻转给出的。与A(S,M)或C(S,M)的簇交换图相同,有各自对应于弧的翻转的突变概念。簇交换图可以被赋予一个方向,这个有向图中的最大路称为极大绿序列。 这些极大绿序列在不同的背景下被研究,因为它们产生了量子双对数恒等式和非交换的Donaldson-Thomas不变量。五角形(S,M)的情况产生了两个斜交变量的经典量子双对数恒等式,这种构造已被Reineke和Keller推广到许多其他情况。此外,黎曼曲面也是在弦理论的背景下,在数学物理中被研究的。特别地,弦理论中BPS(Bogomol‘nyi-Prasad-Sommerfield)粒子的全谱可以用最大格林序列来计算。弦理论的方法是基于S的二次微分,最近Bridgeland和Smith的工作将其与研究三角范畴C(S,M)上的稳定性条件联系起来。 这项研究建议的主要目标是: ·利用序上的Cohen-Macaulay模,给出了独立于任何三角剖分的簇范畴C(S,M)的定义。 ·研究交换图中的最小路。 ·利用稳定性条件刻画了C(S,M)上极大格林序列的存在性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brüstle, Thomas其他文献

Brüstle, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brüstle, Thomas', 18)}}的其他基金

Exact Structures in Representation Theory
表示论中的精确结构
  • 批准号:
    RGPIN-2019-04465
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Exact Structures in Representation Theory
表示论中的精确结构
  • 批准号:
    RGPIN-2019-04465
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Exact Structures in Representation Theory
表示论中的精确结构
  • 批准号:
    RGPIN-2019-04465
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Exact Structures in Representation Theory
表示论中的精确结构
  • 批准号:
    RGPIN-2019-04465
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Cluster algebras and triangualtions of surfaces
簇代数和曲面三角剖分
  • 批准号:
    293166-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Cluster algebras and triangualtions of surfaces
簇代数和曲面三角剖分
  • 批准号:
    293166-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Teaching Object Relative Clauses and their Related Constructions: Contribution of Theoretical Linguistics to English Pedagogy
教学对象关系从句及其相关结构:理论语言学对英语教育学的贡献
  • 批准号:
    16K13266
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A Study of Sentence Structures and Semantic and Discorse Interface: On Rhetorical Question and the Related WH-Constructions
句子结构与语义与话语界面的研究:论反问句及相关WH结构
  • 批准号:
    15K02607
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Syntax of Represented Speech and Its Related Constructions
表征语音的句法及其相关结构
  • 批准号:
    15K02608
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
  • 批准号:
    RGPIN-2014-05999
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Historical and Contrastive Linguistics Study of Japanese Questions and their Related Constructions
日本问题及其相关结构的历史语言学和比较语言学研究
  • 批准号:
    21820023
  • 财政年份:
    2009
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Neurological Mechanisms of Word Formation: An Empirical Study by Collaboration of Theoretical Linguistics and Neurolinguistics
构词的神经机制:理论语言学与神经语言学合作的实证研究
  • 批准号:
    17520319
  • 财政年份:
    2005
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Theoretical and Empirical Study on the Mental and Neural Mechanisms of Word Formation
构词心理神经机制的理论与实证研究
  • 批准号:
    14510505
  • 财政年份:
    2002
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了