Exact Structures in Representation Theory
表示论中的精确结构
基本信息
- 批准号:RGPIN-2019-04465
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to develop a theory of stability conditions in a general setting and thus advance the knowledge in this field.
The objectives of this proposal are to:
1) study stability conditions in the new context of exact categories, and
2) interpret the matrix reduction technique as a change of exact structure.
The approach is, in both cases, to work with exact structures that have been defined by Quillen in his fundamental work on K-theory. They provide a framework that allows the use of methods from homological algebra, but is strictly more general than the setting of abelian categories. Stability conditions have been studied systematically in geometry and theoretical physics. The motivation stems from a phenomenon called mirror symmetry, relating two seemingly unrelated geometrical objects relevant to theoretical physics.
The matrix reduction technique is an elementary tool that has been used by the Kiev school to obtain fundamental results in representation theory of algebras. The formal setup for matrix reduction has been given using a certain setup called called BOCSes. The disadvantage of this approach is that iterated reduction of matrices, per se not a complicated technique, produces more and more complicated descriptions of objects in the categories to be studied. We propose here a fundamentally novel approach: instead of changing the objects, we suggest to keep the same category, but to change its exact structure.
We plan to apply this technique of reductions of exact structures to solve questions related to representation theory and mirror symmetry.
该项目的目的是在一般情况下发展稳定性条件的理论,从而推进这一领域的知识。
这项建议的目标是:
1)在新的范畴背景下研究稳定性条件,
2)将矩阵简化技术解释为精确结构的改变。
在这两种情况下,方法都是使用奎伦在他关于K理论的基础工作中定义的精确结构。他们提供了一个框架,允许使用的方法从同调代数,但严格更普遍的设置比阿贝尔范畴。稳定性条件在几何学和理论物理学中都有系统的研究。其动机源于一种称为镜像对称的现象,将两个看似无关的几何对象与理论物理学联系起来。
矩阵降阶技术是基辅学派用来获得代数表示论基本结果的一种基本工具。矩阵约简的正式设置已经使用称为BOCSes的特定设置给出。这种方法的缺点是,迭代减少矩阵,本身不是一个复杂的技术,产生越来越复杂的描述对象的类别进行研究。我们在这里提出了一个从根本上新颖的方法:而不是改变对象,我们建议保持相同的类别,但改变其确切的结构。
我们计划应用这种精确结构的简化技术来解决与表示论和镜像对称有关的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brüstle, Thomas其他文献
Brüstle, Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brüstle, Thomas', 18)}}的其他基金
Exact Structures in Representation Theory
表示论中的精确结构
- 批准号:
RGPIN-2019-04465 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Exact Structures in Representation Theory
表示论中的精确结构
- 批准号:
RGPIN-2019-04465 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Exact Structures in Representation Theory
表示论中的精确结构
- 批准号:
RGPIN-2019-04465 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
- 批准号:
RGPIN-2014-05999 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
- 批准号:
RGPIN-2014-05999 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
- 批准号:
RGPIN-2014-05999 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
- 批准号:
RGPIN-2014-05999 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic constructions related to marked Riemann surfaces
与标记黎曼曲面相关的代数构造
- 批准号:
RGPIN-2014-05999 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Cluster algebras and triangualtions of surfaces
簇代数和曲面三角剖分
- 批准号:
293166-2009 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Cluster algebras and triangualtions of surfaces
簇代数和曲面三角剖分
- 批准号:
293166-2009 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Exact Structures in Representation Theory
表示论中的精确结构
- 批准号:
RGPIN-2019-04465 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Uncovering and Exploiting Multiscale Structures in Big Data Using Diffusion-Based Representation and Optimal Sampling
LEAPS-MPS:使用基于扩散的表示和最佳采样来发现和利用大数据中的多尺度结构
- 批准号:
2232344 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Higher structures and deformations in representation theory
表示论中的高级结构和变形
- 批准号:
503982309 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Research Grants
LEAPS-MPS: Uncovering and Exploiting Multiscale Structures in Big Data Using Diffusion-Based Representation and Optimal Sampling
LEAPS-MPS:使用基于扩散的表示和最佳采样来发现和利用大数据中的多尺度结构
- 批准号:
2137649 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Exact Structures in Representation Theory
表示论中的精确结构
- 批准号:
RGPIN-2019-04465 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Development of a new computational method for predicting drug - target interactions using a TSR-based representation of 3-D structures
开发一种新的计算方法,使用基于 TSR 的 3-D 结构表示来预测药物-靶点相互作用
- 批准号:
10363369 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Exact Structures in Representation Theory
表示论中的精确结构
- 批准号:
RGPIN-2019-04465 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
The Development and Nature of the Processes that Underlie the Representation of Center-embedded, Recursive Structures
中心嵌入递归结构表示过程的发展和本质
- 批准号:
10251327 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别: