Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
基本信息
- 批准号:RGPIN-2014-06099
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical analysis of data generally requires the analyst to make assumptions about the way the data were generated. My research is largely directed towards developing statistical techniques to check these assumptions. The assumptions data analysts make can generally be wrong in many ways. As a result many of the methods that have been suggested for assessing the assumptions have been ad hoc; they have focused on one particular direction in which the assumptions might be wrong and suggested some method for detecting departures from assumptions in that particular direction. The methods themselves are suggested largely because they sound reasonable or because they seem to lend themselves to mathematical analysis.
In the next five years I, with my students and colleagues, will be trying to systematize these ad hoc approaches. I will use so-called Bayesian assisted approaches to describe the possible directions of departure from the assumptions and then try to find methods that are approximately the best possible for the particular Bayesian description chosen (in technical words, best possible for a given “prior distribution” on the nature of the failure of the model assumptions). Such a principled approach leaves much work to be done to evaluate the resulting analysis techniques. In complex statistical problems there is a great deal of flexibility in the choice of the Bayesian prior description and it can be hard to see whether or not a particular choice has buried within it unreasonable real world assumptions; evaluation of this danger for the particular suggestions we make will be one focus of my work.
Another focus will arise from the fact that it will usually not be possible to find a computationally feasible “best” procedure; usually approximately best is as good as we can do. We then need to evaluate the quality of the approximation.
It is also sensible to remember that some of the ad hoc procedures work very well. A further focus of my work will be to evaluate how far short of best possible such procedures lie. Often an easily computable, nearly best, method will be more happily received than a complex, hard to compute, best possible solution.
In addition to this basic work in the area of model assessment, I will be pursuing a variety of problems in other areas. The most important of these considers searches for new physics such as the search for the Higgs boson at CERN. This particular search involved scanning a range of possible masses for the sought-for particle and at each mass looking, statistically, for a signal in the relevant part of a data set. The current strategy for searches of this kind then either declares the particle found, if the statistical evidence is sufficiently overwhelming or, if it is not found, runs through the range of possible masses excluding as many masses as the data permit from being possible candidates of the true mass if the particle really does exist. With students I have been, and will be, working on using the Bayesian ideas mentioned above to combine these two steps into a one-step procedure that achieves the best possible long run behaviour.
数据的统计分析通常要求分析人员对数据的生成方式做出假设。 我的研究主要是针对发展统计技术来检查这些假设。 数据分析师做出的假设通常在许多方面都是错误的。 因此,为评估假设而提出的许多方法都是临时性的;它们集中在假设可能错误的一个特定方向上,并提出了一些方法来检测偏离该特定方向的假设。 这些方法本身之所以被提出来,主要是因为它们听起来很合理,或者是因为它们似乎适合于数学分析。
在接下来的五年里,我将和我的学生和同事们一起,努力使这些特别的方法系统化。 我将使用所谓的贝叶斯辅助方法来描述偏离假设的可能方向,然后尝试找到近似最适合所选特定贝叶斯描述的方法(用专业术语来说,最适合给定的“先验分布”,即模型假设失效的性质)。 这种原则性的方法留下了许多工作要做,以评估所产生的分析技术。 在复杂的统计问题中,贝叶斯先验描述的选择有很大的灵活性,很难看出一个特定的选择是否埋下了不合理的真实的世界假设;对我们提出的特定建议的这种危险的评估将是我的工作重点之一。
另一个焦点将来自于这样一个事实,即通常不可能找到一个计算上可行的“最佳”程序;通常近似最佳是我们所能做的。 然后,我们需要评估近似的质量。
还应明智地记住,有些临时程序运作得很好。 我工作的另一个重点将是评估这种程序离最好的可能性还有多远。 通常,一个容易计算的、接近最佳的方法会比一个复杂的、难以计算的、可能的最佳解决方案更容易被接受。
除了模型评估领域的这一基本工作之外,我还将在其他领域研究各种问题。 其中最重要的是考虑寻找新的物理学,如在欧洲核子研究中心寻找希格斯玻色子。 这种特殊的搜索涉及扫描所寻找的粒子的可能质量范围,并在每个质量上从统计学上寻找数据集中相关部分的信号。 如果统计学证据足够充分,那么目前的这种搜索策略要么宣布发现了粒子,要么,如果没有发现粒子,那么,如果粒子确实存在,那么,在可能的质量范围内排除数据允许的尽可能多的质量,使其成为真实质量的可能候选者。 我一直在和学生们一起,并将继续使用上面提到的贝叶斯思想,将这两个步骤联合收割机结合成一个步骤,以实现最佳的长期行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lockhart, Richard其他文献
Penalized regression, mixed effects models and appropriate modelling
- DOI:
10.1214/13-ejs809 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:1.1
- 作者:
Heckman, Nancy;Lockhart, Richard;Nielsen, Jason D. - 通讯作者:
Nielsen, Jason D.
SARS-CoV-2 transmission in university classes.
- DOI:
10.1007/s13721-022-00375-1 - 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Ruth, William;Lockhart, Richard - 通讯作者:
Lockhart, Richard
Lockhart, Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lockhart, Richard', 18)}}的其他基金
Bayes assisted model assessment
贝叶斯辅助模型评估
- 批准号:
RGPIN-2021-03185 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bayes assisted model assessment
贝叶斯辅助模型评估
- 批准号:
RGPIN-2021-03185 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
RGPIN-2014-06099 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
RGPIN-2014-06099 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
RGPIN-2014-06099 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
RGPIN-2014-06099 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
RGPIN-2014-06099 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
461924-2014 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
461924-2014 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
- 批准号:
RGPIN-2014-06099 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
光辅助MOCVD法制备多层结构提高厚YBCO 外延膜电流承载能力的研究
- 批准号:51002063
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
控制厚皮甜瓜花性型基因“A“的精细构图及标记辅助育种
- 批准号:30471113
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
- 批准号:
EP/Y037294/1 - 财政年份:2025
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
The Ethics of Voluntary Assisted Dying: Promoting Constructive Debate
自愿辅助死亡的伦理:促进建设性辩论
- 批准号:
DP240102614 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Projects
Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
- 批准号:
EP/Y036379/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Linkage Projects