Bayes assisted frequentist model assessment and statistical inference

贝叶斯辅助频率模型评估和统计推断

基本信息

  • 批准号:
    RGPIN-2014-06099
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Statistical analysis of data generally requires the analyst to make assumptions about the way the data were generated. My research is largely directed towards developing statistical techniques to check these assumptions. The assumptions data analysts make can generally be wrong in many ways. As a result many of the methods that have been suggested for assessing the assumptions have been ad hoc; they have focused on one particular direction in which the assumptions might be wrong and suggested some method for detecting departures from assumptions in that particular direction. The methods themselves are suggested largely because they sound reasonable or because they seem to lend themselves to mathematical analysis.In the next five years I, with my students and colleagues, will be trying to systematize these ad hoc approaches. I will use so-called Bayesian assisted approaches to describe the possible directions of departure from the assumptions and then try to find methods that are approximately the best possible for the particular Bayesian description chosen (in technical words, best possible for a given “prior distribution” on the nature of the failure of the model assumptions). Such a principled approach leaves much work to be done to evaluate the resulting analysis techniques. In complex statistical problems there is a great deal of flexibility in the choice of the Bayesian prior description and it can be hard to see whether or not a particular choice has buried within it unreasonable real world assumptions; evaluation of this danger for the particular suggestions we make will be one focus of my work. Another focus will arise from the fact that it will usually not be possible to find a computationally feasible “best” procedure; usually approximately best is as good as we can do. We then need to evaluate the quality of the approximation.It is also sensible to remember that some of the ad hoc procedures work very well. A further focus of my work will be to evaluate how far short of best possible such procedures lie. Often an easily computable, nearly best, method will be more happily received than a complex, hard to compute, best possible solution.In addition to this basic work in the area of model assessment, I will be pursuing a variety of problems in other areas. The most important of these considers searches for new physics such as the search for the Higgs boson at CERN. This particular search involved scanning a range of possible masses for the sought-for particle and at each mass looking, statistically, for a signal in the relevant part of a data set. The current strategy for searches of this kind then either declares the particle found, if the statistical evidence is sufficiently overwhelming or, if it is not found, runs through the range of possible masses excluding as many masses as the data permit from being possible candidates of the true mass if the particle really does exist. With students I have been, and will be, working on using the Bayesian ideas mentioned above to combine these two steps into a one-step procedure that achieves the best possible long run behaviour.
数据的统计分析通常要求分析师对数据的生成方式做出假设。我的研究主要是为了开发统计技术来检验这些假设。数据分析师所做的假设通常在很多方面都是错误的。因此,所建议的评估假设的许多方法都是临时的;它们侧重于假设可能出错的一个特定方向,并提出了一些方法来检测在该特定方向上偏离假设的情况。这些方法本身之所以被提出,主要是因为它们听起来合理,或者因为它们似乎适合进行数学分析。在接下来的五年里,我将与我的学生和同事一起,努力使这些特别的方法系统化。我将使用所谓的贝叶斯辅助方法来描述偏离假设的可能方向,然后尝试找到对于所选特定贝叶斯描述而言近似最佳的方法(技术上讲,对于给定的关于模型假设失败的性质的“先验分布”,最佳可能的方法)。这种原则性的方法留下了大量的工作要做,以评估产生的分析技术。在复杂的统计问题中,在选择贝叶斯先验描述方面有很大的灵活性,很难看出某个特定的选择是否隐藏了不合理的现实世界假设;为我们提出的特定建议评估这种危险将是我工作的重点之一。另一个焦点将出现在这样一个事实上,即通常不可能找到在计算上可行的“最佳”程序;通常近似最佳是我们所能做的最好的。然后我们需要评估近似的质量。记住,一些特别程序运行得很好,这也是明智的。我工作的另一个重点将是评估此类程序离最佳可能的程序还有多远。通常,一个容易计算、近乎最好的方法比一个复杂、难以计算的最佳解决方案更容易被接受。除了模型评估领域的这项基本工作外,我还将在其他领域研究各种问题。其中最重要的考虑是寻找新的物理,例如在欧洲核子研究中心寻找希格斯玻色子。这种特殊的搜索包括扫描一系列可能的质量以寻找寻找的粒子,并在每个质量上从统计学上寻找数据集的相关部分中的信号。目前这类搜索的策略是,如果统计证据足够压倒性,则宣布找到的粒子;如果没有发现,则遍历可能的质量范围,如果粒子确实存在,排除数据允许的尽可能多的质量,使其不可能成为真实质量的可能候选者。与学生们一起,我一直致力于并将致力于使用上面提到的贝叶斯思想,将这两个步骤结合成一个一步程序,以实现可能的最佳长期行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lockhart, Richard其他文献

Penalized regression, mixed effects models and appropriate modelling
  • DOI:
    10.1214/13-ejs809
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Heckman, Nancy;Lockhart, Richard;Nielsen, Jason D.
  • 通讯作者:
    Nielsen, Jason D.
SARS-CoV-2 transmission in university classes.

Lockhart, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lockhart, Richard', 18)}}的其他基金

Bayes assisted model assessment
贝叶斯辅助模型评估
  • 批准号:
    RGPIN-2021-03185
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted model assessment
贝叶斯辅助模型评估
  • 批准号:
    RGPIN-2021-03185
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    461924-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    461924-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

光辅助MOCVD法制备多层结构提高厚YBCO 外延膜电流承载能力的研究
  • 批准号:
    51002063
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
控制厚皮甜瓜花性型基因“A“的精细构图及标记辅助育种
  • 批准号:
    30471113
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
  • 批准号:
    EP/Y037294/1
  • 财政年份:
    2025
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
The Ethics of Voluntary Assisted Dying: Promoting Constructive Debate
自愿辅助死亡的伦理:促进建设性辩论
  • 批准号:
    DP240102614
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Projects
Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
  • 批准号:
    EP/Y036379/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
  • 批准号:
    EP/Y001877/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了