Bayes assisted frequentist model assessment and statistical inference

贝叶斯辅助频率模型评估和统计推断

基本信息

  • 批准号:
    RGPIN-2014-06099
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Statistical analysis of data generally requires the analyst to make assumptions about the way the data were generated. My research is largely directed towards developing statistical techniques to check these assumptions. The assumptions data analysts make can generally be wrong in many ways. As a result many of the methods that have been suggested for assessing the assumptions have been ad hoc; they have focused on one particular direction in which the assumptions might be wrong and suggested some method for detecting departures from assumptions in that particular direction. The methods themselves are suggested largely because they sound reasonable or because they seem to lend themselves to mathematical analysis. In the next five years I, with my students and colleagues, will be trying to systematize these ad hoc approaches. I will use so-called Bayesian assisted approaches to describe the possible directions of departure from the assumptions and then try to find methods that are approximately the best possible for the particular Bayesian description chosen (in technical words, best possible for a given "prior distribution" on the nature of the failure of the model assumptions). Such a principled approach leaves much work to be done to evaluate the resulting analysis techniques. In complex statistical problems there is a great deal of flexibility in the choice of the Bayesian prior description and it can be hard to see whether or not a particular choice has buried within it unreasonable real world assumptions; evaluation of this danger for the particular suggestions we make will be one focus of my work. Another focus will arise from the fact that it will usually not be possible to find a computationally feasible "best" procedure; usually approximately best is as good as we can do. We then need to evaluate the quality of the approximation. It is also sensible to remember that some of the ad hoc procedures work very well. A further focus of my work will be to evaluate how far short of best possible such procedures lie. Often an easily computable, nearly best, method will be more happily received than a complex, hard to compute, best possible solution. In addition to this basic work in the area of model assessment, I will be pursuing a variety of problems in other areas. The most important of these considers searches for new physics such as the search for the Higgs boson at CERN. This particular search involved scanning a range of possible masses for the sought-for particle and at each mass looking, statistically, for a signal in the relevant part of a data set. The current strategy for searches of this kind then either declares the particle found, if the statistical evidence is sufficiently overwhelming or, if it is not found, runs through the range of possible masses excluding as many masses as the data permit from being possible candidates of the true mass if the particle really does exist. With students I have been, and will be, working on using the Bayesian ideas mentioned above to combine these two steps into a one-step procedure that achieves the best possible long run behaviour.
数据的统计分析通常要求分析人员对数据产生的方式做出假设。我的研究主要是为了开发统计技术来检验这些假设。数据分析师做出的假设通常在很多方面都是错误的。因此,许多评估假设的建议方法都是临时的;他们专注于一个特定的方向,在这个方向上假设可能是错误的,并提出了一些方法来检测在该特定方向上偏离假设的情况。这些方法本身之所以被提出,很大程度上是因为它们听起来合理,或者因为它们似乎适合于数学分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lockhart, Richard其他文献

Penalized regression, mixed effects models and appropriate modelling
  • DOI:
    10.1214/13-ejs809
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Heckman, Nancy;Lockhart, Richard;Nielsen, Jason D.
  • 通讯作者:
    Nielsen, Jason D.
SARS-CoV-2 transmission in university classes.

Lockhart, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lockhart, Richard', 18)}}的其他基金

Bayes assisted model assessment
贝叶斯辅助模型评估
  • 批准号:
    RGPIN-2021-03185
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted model assessment
贝叶斯辅助模型评估
  • 批准号:
    RGPIN-2021-03185
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    461924-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    461924-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Bayes assisted frequentist model assessment and statistical inference
贝叶斯辅助频率模型评估和统计推断
  • 批准号:
    RGPIN-2014-06099
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

光辅助MOCVD法制备多层结构提高厚YBCO 外延膜电流承载能力的研究
  • 批准号:
    51002063
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
控制厚皮甜瓜花性型基因“A“的精细构图及标记辅助育种
  • 批准号:
    30471113
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
  • 批准号:
    EP/Y037294/1
  • 财政年份:
    2025
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
The Ethics of Voluntary Assisted Dying: Promoting Constructive Debate
自愿辅助死亡的伦理:促进建设性辩论
  • 批准号:
    DP240102614
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Projects
Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
  • 批准号:
    EP/Y036379/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
  • 批准号:
    LP220200906
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了