On the Foundations and Methods of Quantum Cryptography

论量子密码学的基础和方法

基本信息

  • 批准号:
    RGPIN-2015-05385
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

This project aims at improving our understanding of the foundations of quantum cryptography, to develop quantum tools allowing for new cryptographic primitives and a better understanding of its limits. The fact that two parties can agree upon a secret key using quantum communication (i.e. quantum key distribution) has first given hopes that the main goals of cryptography: data privacy, data authenticity, and data integrity could be provided information theoretically by quantum mechanics while, as we know, being impossible by classical means alone. Even before the security of quantum key distribution was fully established, researchers have shown that other cryptographic primitives would remain impossible even by all powerful quantum experimentalists. The picture of cryptography in a quantum world is therefore not as unconstrained as one could have first thought. In addition to the realization of classical cryptographic tasks by quantum information processing, quantum cryptography is also interested in providing means by which cryptographic techniques can be applied to quantum systems. Very often, classical primitives have a natural quantum interpretation. For instance, signing documents in order to publicly guarantee their integrity and authenticity has a natural quantum counterpart: signing quantum states. Quantum cryptography is interested in determining under what conditions, if any, these quantum primitives are possible. As an example, although signing documents can be performed securely based upon reasonable computational assumptions, signing quantum states remains impossible in this setting. On the other hand, while electronic money cannot be easily protected against double-spending, quantum money does not have this vulnerability, thanks to the uncertainty principle.
该项目旨在提高我们对量子密码学基础的理解,开发量子工具,允许新的密码学原语并更好地理解其局限性。两方可以使用量子通信(即量子密钥分发)就秘密密钥达成一致的事实首先给人们带来了希望,即密码学的主要目标:数据隐私、数据真实性和数据完整性可以在理论上通过量子力学提供信息,而据我们所知,仅通过经典手段是不可能的。甚至在量子密钥分发的安全性完全建立之前,研究人员就已经表明,即使对于所有强大的量子实验学家来说,其他加密原语仍然是不可能的。因此,量子世界中的密码学图景并不像人们最初想象的那样不受约束。除了通过量子信息处理实现经典密码任务之外,量子密码学还致力于提供将密码技术应用于量子系统的手段。通常,经典基元具有自然的量子解释。例如,签署文件以公开保证其完整性和真实性有一个自然的量子对应物:签署量子态。量子密码学感兴趣的是确定在什么条件下(如果有的话)这些量子原语是可能的。例如,尽管可以基于合理的计算假设安全地执行文档签名,但在这种情况下签名量子态仍然是不可能的。另一方面,虽然电子货币无法轻易防止双重支出,但由于不确定性原理,量子货币不存在这种漏洞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Salvail, Louis其他文献

Blind quantum computation

Salvail, Louis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Salvail, Louis', 18)}}的其他基金

On the Foundations and Methods of Quantum Cryptography
论量子密码学的基础和方法
  • 批准号:
    RGPIN-2015-05385
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
On the Foundations and Methods of Quantum Cryptography
论量子密码学的基础和方法
  • 批准号:
    RGPIN-2015-05385
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
On the Foundations and Methods of Quantum Cryptography
论量子密码学的基础和方法
  • 批准号:
    RGPIN-2015-05385
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
On the Foundations and Methods of Quantum Cryptography
论量子密码学的基础和方法
  • 批准号:
    477862-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
On the Foundations and Methods of Quantum Cryptography
论量子密码学的基础和方法
  • 批准号:
    RGPIN-2015-05385
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
On the Foundations and Methods of Quantum Cryptography
论量子密码学的基础和方法
  • 批准号:
    477862-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Two-party quantum cryptography
两方量子密码学
  • 批准号:
    356101-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Two-party quantum cryptography
两方量子密码学
  • 批准号:
    356101-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Two-party quantum cryptography
两方量子密码学
  • 批准号:
    356101-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Two-party quantum cryptography
两方量子密码学
  • 批准号:
    356101-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Quantum Chemical Methods for Studying Photon and Electron Driven Processes
研究光子和电子驱动过程的量子化学方法
  • 批准号:
    2303111
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Mathematical methods for quantum many-body systems
量子多体系统的数学方法
  • 批准号:
    2895294
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
  • 批准号:
    2350325
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
  • 批准号:
    FT230100571
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    ARC Future Fellowships
Excited State Specific Correlation Methods in Quantum Chemistry
量子化学中激发态特定关联方法
  • 批准号:
    2320936
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
  • 批准号:
    2316007
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
  • 批准号:
    22KJ2096
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了