A scalable uncertainty quantification and data assimilation framework for tracking stochastic fluid interfaces: application to civil and environmental engineering

用于跟踪随机流体界面的可扩展不确定性量化和数据同化框架:在土木和环境工程中的应用

基本信息

  • 批准号:
    312528-2010
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Many engineering problems involve complex dynamics of evolving flow front such as contaminant spills, floodwater and oil recovery operation. Therefore the ability to predict the evolving front is of great practical concern. For example, a continuously updated computer prediction with measurement data (airborne images and land-based sensor data) on how contaminant front or floodwater will propagate in few hours, days or weeks can help plan evacuations in order to save lives and properties. In this proposal, a computational model will be developed to continuously update prediction by injecting observational data into a running computer simulation for more accurate early warning on the motion of the moving flow front. To achieve this goal, the proposed research covers five key areas: (1) uncertainty quantification and sequential data assimilation techniques will be used to continuously update flow simulation models with measurement data to improve the confidence in their predictions; (2) the requisite high performance simulation models will exploit a domain decomposition method; (3) dynamic deformation of fluid interfaces will be tracked using the level set method; (4) a scalable integrated software suite will be developed to implement the above algorithms to take advantage of emerging high performance computing hardware; (5) this approach will be applied to contaminant tracking, flood forecasting and oil recovery. The proposed research is of benefit to water resource decision-makers (e.g. irrigation), ecosystem and environmental decision-makers (e.g. related to water and air quality), provincial and local emergency management (e.g. due to toxic chemical release) and oil recovery effort in Canada.
许多工程问题涉及复杂的动态演变的流动前沿,如污染物泄漏,洪水和石油回收操作。因此,预测不断变化的前沿的能力具有很大的实际意义。例如,利用测量数据(机载图像和陆基传感器数据)不断更新的计算机预测污染物前沿或洪水将如何在几小时、几天或几周内传播,可以帮助规划疏散,以挽救生命和财产。在这项建议中,将开发一个计算模型,通过将观测数据注入正在运行的计算机模拟中,不断更新预测,以便更准确地预警移动气流锋的运动。为了实现这一目标,拟议的研究包括五个关键领域:(1)不确定性量化和顺序数据同化技术将用于不断更新流动模拟模型与测量数据,以提高其预测的信心:(2)所需的高性能模拟模型将采用区域分解方法;(3)将使用水平集方法跟踪流体界面的动态变形;(4)将开发一个可扩展的集成软件套件来实现上述算法,以利用新兴的高性能计算硬件;(5)该方法将应用于污染物跟踪、洪水预报和采油。拟议的研究是有益的水资源决策者(如灌溉),生态系统和环境决策者(如有关水和空气质量),省级和地方应急管理(如由于有毒化学品释放)和石油回收工作在加拿大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarkar, Abhijit其他文献

Elevated ozone and two modern wheat cultivars: An assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters
  • DOI:
    10.1016/j.envexpbot.2010.04.016
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Sarkar, Abhijit;Agrawal, S. B.
  • 通讯作者:
    Agrawal, S. B.
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
Protective effect of arjunolic acid against atorvastatin induced hepatic and renal pathophysiology via MAPK, mitochondria and ER dependent pathways
  • DOI:
    10.1016/j.biochi.2015.02.016
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Pal, Sankhadeep;Sarkar, Abhijit;Sil, Parames C.
  • 通讯作者:
    Sil, Parames C.
Influence of North Atlantic Oscillation on Indian Summer Monsoon Rainfall in Relation to Quasi-Binneal Oscillation
  • DOI:
    10.1007/s00024-016-1306-z
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Bhatla, R.;Singh, A. K.;Sarkar, Abhijit
  • 通讯作者:
    Sarkar, Abhijit
Unravelling the Complexity of Irregular Shiftwork, Fatigue and Sleep Health for Commercial Drivers and the Associated Implications for Roadway Safety.
  • DOI:
    10.3390/ijerph192214780
  • 发表时间:
    2022-11-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mabry, Jessica Erin;Camden, Matthew;Miller, Andrew;Sarkar, Abhijit;Manke, Aditi;Ridgeway, Christiana;Iridiastadi, Hardianto;Crowder, Tarah;Islam, Mouyid;Soccolich, Susan;Hanowski, Richard J.
  • 通讯作者:
    Hanowski, Richard J.

Sarkar, Abhijit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarkar, Abhijit', 18)}}的其他基金

Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Uncertainty Quantification with High Performance Computing Applications
高性能计算应用程序的不确定性量化
  • 批准号:
    1000209063-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Canada Research Chairs
A scalable uncertainty quantification and data assimilation framework for tracking stochastic fluid interfaces: application to civil and environmental engineering
用于跟踪随机流体界面的可扩展不确定性量化和数据同化框架:在土木和环境工程中的应用
  • 批准号:
    312528-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Uncertainty Quantification with High Performance Computing Applications
高性能计算应用程序的不确定性量化
  • 批准号:
    1000209063-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Canada Research Chairs
A scalable uncertainty quantification and data assimilation framework for tracking stochastic fluid interfaces: application to civil and environmental engineering
用于跟踪随机流体界面的可扩展不确定性量化和数据同化框架:在土木和环境工程中的应用
  • 批准号:
    312528-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

应用ISOCS监测侵蚀区土壤中137Cs,210Pbex,7Be的适用性
  • 批准号:
    40701099
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
空间数据不确定性的若干问题研究
  • 批准号:
    40352002
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Uncertainty Quantification for Data-Driven PET Image Reconstruction
用于数据驱动 PET 图像重建的可扩展不确定性量化
  • 批准号:
    2298269
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
BIGDATA: F: Scalable Bayes Uncertainty Quantification with Guarantees
BIGDATA:F:具有保证的可扩展贝叶斯不确定性量化
  • 批准号:
    1546130
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Statistical Validation and Uncertainty Quantification for Large Spatio-Temporal Datasets
合作研究:大型时空数据集的可扩展统计验证和不确定性量化
  • 批准号:
    1417724
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了