Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
基本信息
- 批准号:436169-2013
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A good example of nearly integrable systems is the solar system. Indeed, the stability of the solar system has been a motivating question that drives the field. Since Poincaré's proof that the planar three body question is not integrable, the answer to the stability question has gone through several reversals.
太阳系是几乎可积系统的一个很好的例子。事实上,太阳系的稳定性一直是驱动磁场的一个激励问题。自从庞加莱证明平面三体问题不可积以来,稳定性问题的答案经历了几次逆转。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Ke其他文献
Well-defined cationic shell crosslinked nanoparticles for efficient delivery of DNA or peptide nucleic acids.
- DOI:
10.1513/pats.200902-010aw - 发表时间:
2009-08-15 - 期刊:
- 影响因子:0
- 作者:
Zhang, Ke;Fang, Huafeng;Wooley, Karen L - 通讯作者:
Wooley, Karen L
Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting Acer truncatum Bunge seed oil revealed by lipidomics approach
- DOI:
10.1039/d1fo03671h - 发表时间:
2022-01-21 - 期刊:
- 影响因子:6.1
- 作者:
Song, Wangting;Zhang, Ke;Chen, Xianyang - 通讯作者:
Chen, Xianyang
Binding proteins of destruxin A from Metarhizium against insect cell.
- DOI:
10.1186/s12866-023-02843-8 - 发表时间:
2023-04-04 - 期刊:
- 影响因子:4.2
- 作者:
Wang, Jingjing;Weng, Qunfang;Zhang, Ke;Hu, Qiongbo - 通讯作者:
Hu, Qiongbo
Modular construction of macrocycle-based topological polymers via high-efficient thiol chemistry
通过高效硫醇化学模块化构建大环拓扑聚合物
- DOI:
10.1039/c5py00174a - 发表时间:
2015-03 - 期刊:
- 影响因子:4.6
- 作者:
Zhou, Nianchen;Zhang, Ke;Zhang, Zhengbiao;Zhu, Xiulin - 通讯作者:
Zhu, Xiulin
Poly(ADP-ribose) promotes toxicity of C9ORF72 arginine-rich dipeptide repeat proteins.
- DOI:
10.1126/scitranslmed.abq3215 - 发表时间:
2022-09-14 - 期刊:
- 影响因子:17.1
- 作者:
Gao, Junli;Mewborne, Quinlan T.;Girdhar, Amandeep;Sheth, Udit;Coyne, Alyssa N.;Punathil, Ritika;Kang, Bong Gu;Dasovich, Morgan;Veire, Austin;Hernandez, Mariely DeJesus;Liu, Shuaichen;Shi, Zheng;Dafinca, Ruxandra;Fouquerel, Elise;Talbot, Kevin;Kam, Tae-In;Zhang, Yong-Jie;Dickson, Dennis;Petrucelli, Leonard;Van Blitterswijk, Marka;Guo, Lin;Dawson, Ted M.;Dawson, Valina L.;Leung, Anthony K. L.;Lloyd, Thomas E.;Gendron, Tania F.;Rothstein, Jeffrey D.;Zhang, Ke - 通讯作者:
Zhang, Ke
Zhang, Ke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Ke', 18)}}的其他基金
Instabilities in Hamiltonian systems
哈密顿系统的不稳定性
- 批准号:
RGPIN-2019-07057 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in Hamiltonian systems
哈密顿系统的不稳定性
- 批准号:
RGPIN-2019-07057 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in Hamiltonian systems
哈密顿系统的不稳定性
- 批准号:
RGPIN-2019-07057 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in Hamiltonian systems
哈密顿系统的不稳定性
- 批准号:
RGPIN-2019-07057 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Reinforcement learning approach to large scale dynamic pricing
大规模动态定价的强化学习方法
- 批准号:
510818-2017 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
- 批准号:
22H01146 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Impurities and disorder in nearly integrable models
近可积模型中的杂质和无序
- 批准号:
421428100 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Research Units
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Singular nature in nearly integrable Hamiltonian systems and breakdown of classical-quantum correspondence
近可积哈密顿系统的奇异性和经典量子对应的分解
- 批准号:
17K05583 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Instabilities in nearly integrable Hamiltonian systems
近可积哈密顿系统的不稳定性
- 批准号:
436169-2013 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Multi ergodicity in nearly integrable Hamiltonian systems and large deviation properties of infinite ergodic systems
近可积哈密顿系统的多重遍历性和无限遍历系统的大偏差性质
- 批准号:
21540399 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the energy level statistics for classically integrable and nearly integrable quantum systems
经典可积和近可积量子系统的能级统计研究
- 批准号:
18740241 - 财政年份:2006
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




