Reduced Dynamical Models of Turbulent Flow

湍流简化动力学模型

基本信息

  • 批准号:
    RGPIN-2014-04035
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Turbulence affects us on a daily basis: through weather patterns, on airplanes and ships, and in pipelines. However, the theoretical understanding of turbulence remains an elusive but important scientific challenge. While the Navier-Stokes equations provide an accurate description of ordinary fluids, our ability to solve these equations for fluids that behave chaotically is very limited. The problem of predicting energy, transport, and drag in highly turbulent flows defies even the incredible speed and huge memory of today's massively parallel computers. A recent advance, called implicit dealiasing, significantly reduces memory usage and computation time compared with conventional simulation techniques. We propose to implement implicit dealiasing on massively parallel computers so that computation can be performed simultaneously with communication. Our adaptive algorithm is optimized for distributed networks of multicore processors. To benchmark our algorithms, Professor Wendell Horton at The University of Texas has generously given our group access to the sixth fastest supercomputer in the world, the Dell Zeus C8220 cluster (Stampede) at the Texas Advanced Computer Center. This project will give Canadian students opportunities to work with state-of-the-art supercomputers that are far more powerful than anything currently available in our country. Even with implicit dealiasing, however, the numerical simulation of fully developed turbulence is still beyond reach, because of the huge range of space and time scales. For this reason, a subgrid model is often adopted to approximate the effects of unresolved small scales on the larger retained scales. A reliable method for determining the effective eddy viscosity due to deleted subgrid modes constitutes a major unsolved problem for numerical simulations of turbulence, where one only evolves large scale modes. Reduced models allow a simulation on today's computers to mimic computations that will likely not be directly possible even on the computers of the next century. The recent development of a method for predicting the statistical properties of two-dimensional homogeneous fluid turbulence, called pseudospectral reduction, provides us with a new tool for achieving this goal. The statistics predicted by this reduced model agree remarkably well with large-scale numerical simulation data, even in flows containing long-lived vortices. The Russian mathematician Kolmogorov conjectured that turbulent energy transfer is independent of scale, due to a presumed underlying self-similarity in the energy transfer. We propose to compute this flux directly, building on the recently discovered fast partial Fourier transform, to verify the degree to which this self-similarity actually holds. The ultimate goal is to use this information to join pseudospectral reduction with a large-scale simulation, yielding a dynamic subgrid model that removes exactly the right amount of energy from each of the scales near the subgrid scale cutoff. This would avoid the bottleneck and overdamping effects that commonly plague subgrid models used in modern large eddy simulations. By greatly increasing the efficiency of numerical simulations of turbulence, this research will lead to an improved ability to understand, predict, and possibly control, turbulence from a mathematical perspective. In addition, the computational tools developed in this work open up new interdisciplinary collaboration opportunities for Canadian researchers and industry. For example, implicit dealiasing would be beneficial to many disciplines where convolutions are used, including data mining, image processing, and signal processing.
湍流每天都在影响着我们:通过天气模式,在飞机和轮船上,在管道中。然而,对湍流的理论理解仍然是一个难以捉摸但又重要的科学挑战。虽然Navier-Stokes方程提供了对普通流体的精确描述,但我们对具有混沌行为的流体求解这些方程的能力非常有限。预测高度湍流中的能量、传输和阻力的问题,即使是当今大规模并行计算机的惊人速度和巨大内存,也无法解决。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bowman, John其他文献

The Methanotrophs-The Families Methylococcaceae and Methylocystaceae
The future of predictive microbiology: Strategic research, innovative applications and great expectations
  • DOI:
    10.1016/j.ijfoodmicro.2008.06.026
  • 发表时间:
    2008-11-30
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    McMeekin, Tom;Bowman, John;Tamplin, Mark
  • 通讯作者:
    Tamplin, Mark
Applicability of the M5 to Forecasting at Walmart
  • DOI:
    10.1016/j.ijforecast.2021.06.002
  • 发表时间:
    2022-10-05
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Seaman, Brian;Bowman, John
  • 通讯作者:
    Bowman, John
Irreducible modules for the quantum affine algebra Uq (g) and its Borel subalgebra Uq (g) ≥0
  • DOI:
    10.1016/j.jalgebra.2007.06.020
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Bowman, John
  • 通讯作者:
    Bowman, John
Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica
  • DOI:
    10.1111/j.1462-2920.2008.01748.x
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Shabala, Lana;Bowman, John;Shabala, Sergey
  • 通讯作者:
    Shabala, Sergey

Bowman, John的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bowman, John', 18)}}的其他基金

Mathematical Methods for Turbulent Flow
湍流的数学方法
  • 批准号:
    RGPIN-2019-06127
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Methods for Turbulent Flow
湍流的数学方法
  • 批准号:
    RGPIN-2019-06127
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Methods for Turbulent Flow
湍流的数学方法
  • 批准号:
    RGPIN-2019-06127
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Methods for Turbulent Flow
湍流的数学方法
  • 批准号:
    RGPAS-2019-00091
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Mathematical Methods for Turbulent Flow
湍流的数学方法
  • 批准号:
    RGPIN-2019-06127
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Methods for Turbulent Flow
湍流的数学方法
  • 批准号:
    RGPAS-2019-00091
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Reduced Dynamical Models of Turbulent Flow
湍流简化动力学模型
  • 批准号:
    RGPIN-2014-04035
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Reduced Dynamical Models of Turbulent Flow
湍流简化动力学模型
  • 批准号:
    RGPIN-2014-04035
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Reduced Dynamical Models of Turbulent Flow
湍流简化动力学模型
  • 批准号:
    RGPIN-2014-04035
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Reduced Dynamical Models of Turbulent Flow
湍流简化动力学模型
  • 批准号:
    RGPIN-2014-04035
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

EEG Biomarkers Derived from Dynamical Network Models Enable Rapid Paths to Accurate Diagnosis and Effective Treatment of Epilepsy
源自动态网络模型的脑电图生物标志物为癫痫的准确诊断和有效治疗提供了快速途径
  • 批准号:
    10665213
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Automatic derivation of dynamical models from temporal network data using a graph rewriting system
使用图重写系统从时态网络数据自动推导动态模型
  • 批准号:
    23H03414
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Advancing Measurements of Supermassive Black Holes with Triaxial Stellar-Dynamical Models
合作研究:利用三轴恒星动力学模型推进超大质量黑洞的测量
  • 批准号:
    2206307
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
  • 批准号:
    RGPIN-2019-06131
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Advancing Measurements of Supermassive Black Holes with Triaxial Stellar-Dynamical Models
合作研究:利用三轴恒星动力学模型推进超大质量黑洞的测量
  • 批准号:
    2206219
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Network models of cortical and subcortical interactions for dynamical control of decision making
CRCNS 研究提案:用于决策动态控制的皮质和皮质下相互作用的网络模型
  • 批准号:
    2207895
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
  • 批准号:
    RGPIN-2019-06131
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Infinitely Deep Neural Models and Dynamical Systems
无限深度神经模型和动力系统
  • 批准号:
    21J14546
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development and validation of particle models for DEM simulations of the dynamical behavior of saturated soils
用于饱和土壤动态行为 DEM 模拟的粒子模型的开发和验证
  • 批准号:
    522310-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Collaborative Research and Development Grants
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
  • 批准号:
    RGPIN-2019-06131
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了