Optimizing advanced stereotactic radiosurgery techniques for brain cancer treatment

优化先进的立体定向放射外科技术用于脑癌治疗

基本信息

  • 批准号:
    RGPIN-2014-04719
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Brain cancer is the second-highest cause of cancer death in Canadian adolescents and young adults Canadian Cancer Society, 2013). Radiosurgery (RS) is a common treatment technique for cancerous tumours in the brain and base of the skull, and the accuracy of the RS treatment is critical to successful cancer eradication. Because radiation is damaging to healthy tissue as well as cancerous tissue, high-quality RS treatment plans must avoid delivering excessive dose to healthy tissue while simultaneously delivering a large dose to tumours, which are commonly positioned adjacent to the brainstem. Unlike other types of radiation therapy, RS usually consists of one treatment of significant radiation dose, rather than many treatments (called fractions) of small dose. The Elekta Gamma Knife Perfexion (PFX) is the state-of-the-art radiation delivery unit for RS, used to treat an estimated 50,000 patients each year (Elekta AB, 2013). In PFX, the patient lies on a couch, surrounded by eight banks of radiation sources (called sectors) all aimed at a single location (called an isocentre) inside a tumour. The couch then moves to irradiate a different location in the tumour, and then to another isocentre, etc., until the target is treated; this process is called “step-and-shoot”. At each isocentre, the sectors can emanate radiation beams of three different diameters (called collimator sizes) to create any radiation dose deposition at any isocentre. The selection of couch positions and collimator configurations can be formulated as a mathematical model to optimize treatment quality. Currently, clinicians manually select isocentres and collimators, which can lead to sub-optimal treatments and long planning times. Additionally, the step-and-shoot process can yield lengthy treatment times and limits the ability to treat large targets. Thus, there is significant clinical interest in transitioning to “continuous path” treatments, where radiation is delivered continuously while the device moves (like painting the tumour with radiation). There is also clinical interest in using PFX for multi-fraction RS (MF-RS), which has challenging dose homogeneity requirements, unlike single-fraction RS (SF-RS), where target dose can be up to twice the prescription dose. With MF-RS, organ motion and setup errors must be addressed. It is also believed that small amounts of organ motion are present even in SF-RS. To address these challenges in planning treatments, this research program will develop methods and tools within the fields of mathematical modelling and optimization to provide high-quality, personalized cancer care for patients receiving SF-RS and MF-RS with PFX. This research will allow more accurate elimination of tumours using PFX, and thus has the potential to save many lives and spare many patients from side effects arising from suboptimal treatments. Further, the use of continuous path treatments will allow larger targets to be treated, expanding the population who is eligible to be treated by PFX, giving clinicians more treatment options, and increasing utilization of PFX equipment. Additionally, continuous treatments will be much faster to delivery than step-and-shoot treatments, allowing for more throughput on PFX units. Thus, Canadians will benefit from both improved health outcomes in cancer treatments and improved utilization of costly healthcare equipment The research field will benefit from the development of techniques to model continuous motion within mathematical models, as well as new techniques to incorporate dimension-specific uncertainties within convex penalty-based optimization models. The methods to generate continuous paths that cover a closed volume have applications in robotics and other areas.
脑癌是加拿大青少年和年轻人癌症死亡的第二大原因(加拿大癌症协会,2013年)。放射外科(RS)是一种常见的治疗脑和颅底癌性肿瘤的技术,RS治疗的准确性对成功根除癌症至关重要。由于辐射对健康组织和癌组织都有损害,因此高质量的RS治疗计划必须避免向健康组织输送过量剂量,同时向肿瘤输送大剂量,这些肿瘤通常位于脑干附近。与其他类型的放射治疗不同,RS通常由一次显著辐射剂量的治疗组成,而不是许多小剂量的治疗(称为分数)。 Elekta伽玛刀Perfume(PFX)是RS的最先进辐射输送装置,每年用于治疗约50,000例患者(Elekta AB,2013)。在PFX中,患者躺在沙发上,周围有八组辐射源(称为扇区),所有辐射源都瞄准肿瘤内的一个位置(称为等中心)。然后,治疗床移动以照射肿瘤中的不同位置,然后照射到另一个等中心等,直到目标被处理;这个过程被称为“分步射击”。在每个等中心,扇区可以发出三种不同直径(称为准直器尺寸)的辐射束,以在任何等中心产生任何辐射剂量沉积。治疗床位置和准直器配置的选择可以用公式表示为优化治疗质量的数学模型。 目前,临床医生手动选择等中心和准直器,这可能导致次优治疗和较长的计划时间。此外,分步发射过程可能产生冗长的治疗时间,并限制了治疗大型目标的能力。因此,在过渡到“连续路径”治疗方面存在显著的临床兴趣,其中在设备移动的同时连续地递送辐射(如用辐射涂抹肿瘤)。临床上也有兴趣将PFX用于多分次RS(MF-RS),这具有挑战性的剂量均匀性要求,不像单分次RS(SF-RS),目标剂量可高达处方剂量的两倍。使用MF-RS,必须解决器官运动和设置错误。还认为即使在SF-RS中也存在少量的器官运动。 为了解决这些治疗计划中的挑战,该研究计划将在数学建模和优化领域开发方法和工具,为接受SF-RS和MF-RS与PFX的患者提供高质量的个性化癌症护理。这项研究将允许使用PFX更准确地消除肿瘤,因此有可能挽救许多生命,并使许多患者免受次优治疗引起的副作用。此外,使用连续路径治疗将允许治疗更大的目标,扩大有资格接受PFX治疗的人群,为临床医生提供更多的治疗选择,并提高PFX设备的利用率。此外,连续处理将比分步处理更快地交付,从而允许在PFX装置上实现更大的吞吐量。因此,加拿大人将受益于癌症治疗的健康结果改善和昂贵医疗设备的利用率提高 该研究领域将受益于在数学模型中对连续运动进行建模的技术的发展,以及在基于凸罚的优化模型中纳入特定维度的不确定性的新技术。生成覆盖封闭体积的连续路径的方法在机器人和其他领域中有应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleman, Dionne其他文献

The Complexity of Transferring Remote Monitoring and Virtual Care Technology Between Countries: Lessons From an International Workshop.
  • DOI:
    10.2196/46873
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Pham, Quynh;Wong, David;Pfisterer, Kaylen J.;Aleman, Dionne;Bansback, Nick;Cafazzo, Joseph A.;Casson, Alexander J.;Chan, Brian;Dixon, William;Kakaroumpas, Gerasimos;Lindner, Claudia;Peek, Niels;Potts, Henry W. W.;Ribeiro, Barbara;Seto, Emily;Stockton-Powdrell, Charlotte;Thompson, Alexander;van der Veer, Sabine
  • 通讯作者:
    van der Veer, Sabine

Aleman, Dionne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleman, Dionne', 18)}}的其他基金

A mathematically-driven framework for pandemic planning and management
用于大流行规划和管理的数学驱动框架
  • 批准号:
    RGPIN-2021-02609
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A mathematically-driven framework for pandemic planning and management
用于大流行规划和管理的数学驱动框架
  • 批准号:
    RGPIN-2021-02609
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing advanced stereotactic radiosurgery techniques for brain cancer treatment
优化先进的立体定向放射外科技术用于脑癌治疗
  • 批准号:
    RGPIN-2014-04719
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing advanced stereotactic radiosurgery techniques for brain cancer treatment
优化先进的立体定向放射外科技术用于脑癌治疗
  • 批准号:
    RGPIN-2014-04719
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing advanced stereotactic radiosurgery techniques for brain cancer treatment
优化先进的立体定向放射外科技术用于脑癌治疗
  • 批准号:
    RGPIN-2014-04719
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing advanced stereotactic radiosurgery techniques for brain cancer treatment
优化先进的立体定向放射外科技术用于脑癌治疗
  • 批准号:
    RGPIN-2014-04719
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing advanced stereotactic radiosurgery techniques for brain cancer treatment
优化先进的立体定向放射外科技术用于脑癌治疗
  • 批准号:
    RGPIN-2014-04719
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization methods for total marrow irradiation using intensity modulated radiation therapy
调强放射治疗全骨髓照射的优化方法
  • 批准号:
    356144-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization methods for total marrow irradiation using intensity modulated radiation therapy
调强放射治疗全骨髓照射的优化方法
  • 批准号:
    356144-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization methods for total marrow irradiation using intensity modulated radiation therapy
调强放射治疗全骨髓照射的优化方法
  • 批准号:
    356144-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
晚期糖基化终产物受体与视网膜母细胞瘤蛋白在前列腺癌细胞中的相互作用及意义
  • 批准号:
    30700835
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
  • 批准号:
    2335175
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Cooperative Agreement
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
  • 批准号:
    2335454
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
EvaluATE: The Evaluation Hub for Advanced Technological Education
EvaluATE:先进技术教育评估中心
  • 批准号:
    2332143
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
  • 批准号:
    LE240100039
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Projects
Decoupling Corrosion of Electrode and Electrolyte in Advanced Batteries
先进电池中电极和电解质的解耦腐蚀
  • 批准号:
    24K17761
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Induction Melt Incremental Thermoforming of Advanced Thermoplastic Composites
先进热塑性复合材料的感应熔融增量热成型
  • 批准号:
    EP/X02766X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了