Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
基本信息
- 批准号:RGPIN-2014-04858
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Currently, there is broad interest in harnessing properties of quantum objects for quantum computation and communication. Quantum computers are predicted to be exponentially more powerful than the classical counterparts for certain tasks, for example, for modeling complex chemicals like drugs, for solving optimization problems (e.g. flight schedules), and breaking encryption codes. Quantum communication promises absolutely secure information transfer between parties using entangled photons as a resource, whose inspection or manipulation by a third party cannot compromise the security of the message being sent. Eavesdropping on such a connection is fundamentally disallowed by the quantum physics law called “no-cloning” theorem.
Photons are the ideal quantum entities for transferring quantum information encoded, for example, in their polarization states. On the other hand, because photons do not interact easily, it is hard to manipulate and store them. These are necessary functionalities for building long distance quantum networks. These restrictions can be eased by using a quantum interface between photons and single electron spins trapped in quantum dots (QD), because electron spin states are much easier to store, manipulate, and measure using demonstrated state of the art techniques developed at NRC.
The process of quantum state transfer from a photon to an electron requires specially engineered quantum states to participate in the process. In particular, the valance band hole state should be split by an in-plane magnetic field, while conduction band electron spin up and spin down states should remain degenerate, i.e. have the same energy. In scientific terms, the electron g-factor (the proportionality coefficient between spin splitting energy and the magnetic field) should be close to zero. In this condition it is impossible to tell which of the electron spins is created, except through direct measurement of the spin. Therefore, a quantum superposition of spin states can be created by a photon of well-defined energy. The electron state created in this process maps out the photon quantum state. In other words, one bit of quantum information is transferred.
The first step in achieving this spin-to-photon interface is to realize special quantum dots with g*~0. This constitutes the main goal of the proposed research. We will develop double quantum dot devices made from the engineered g-factor materials and explore their feasibility for quantum information transfer between photons and electron spins. The electron g-factor will be measured using single spin resonance techniques by monitoring current through a double quantum dot device tuned to the so-called spin-blockade regime. In this regime current is suppressed due to the Pauli exclusion principle, which prevents a mobile electron from tunneling from one dot to the other dot if it already contains an electron of the same spin. Manipulation of spin states will be achieved by applying short microwave bursts and pulse sequences to the QD gates.
In this project we tackle a small but critical component of a greater worldwide activity directed onto the development of secure quantum networks. The necessary and lacking component is an effective spin to photon interface that would ease building efficient quantum memories and repeaters required for the distribution of entanglement in quantum networks. The results of this work will be easily adopted by a growing number of start-up companies and centers interested in quantum technologies.
目前,人们对利用量子物体的特性进行量子计算和量子通信有着广泛的兴趣。据预测,在某些任务上,量子计算机将比传统计算机强大得多,例如,对药物等复杂化学物质进行建模,解决优化问题(如航班时刻表),以及破解加密代码。量子通信保证了使用纠缠光子作为资源的各方之间绝对安全的信息传输,第三方对其检查或操作不会损害所发送信息的安全性。被称为“不可克隆”定理的量子物理定律从根本上禁止窃听这样的连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Studenikin, Sergei其他文献
Holes Outperform Electrons in Group IV Semiconductor Materials
- DOI:
10.1002/smsc.202200094 - 发表时间:
2023-03-02 - 期刊:
- 影响因子:0
- 作者:
Myronov, Maksym;Kycia, Jan;Studenikin, Sergei - 通讯作者:
Studenikin, Sergei
Single hole spin relaxation probed by fast single-shot latched charge sensing
- DOI:
10.1038/s42005-019-0113-0 - 发表时间:
2019-02-18 - 期刊:
- 影响因子:5.5
- 作者:
Bogan, Alex;Studenikin, Sergei;Hargett, Terry - 通讯作者:
Hargett, Terry
Landau-Zener-Stuckelberg-Majorana Interferometry of a Single Hole
- DOI:
10.1103/physrevlett.120.207701 - 发表时间:
2018-05-18 - 期刊:
- 影响因子:8.6
- 作者:
Bogan, Alex;Studenikin, Sergei;Hargett, Terry - 通讯作者:
Hargett, Terry
Studenikin, Sergei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Studenikin, Sergei', 18)}}的其他基金
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2022
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2021
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2019
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2018
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2015
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2014
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Quantum electronic devices and circuits based on InGaAs/InP ridge structures achieved via CBE nano-template technology
通过CBE纳米模板技术实现基于InGaAs/InP脊结构的量子电子器件和电路
- 批准号:
341406-2009 - 财政年份:2012
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Quantum electronic devices and circuits based on InGaAs/InP ridge structures achieved via CBE nano-template technology
通过CBE纳米模板技术实现基于InGaAs/InP脊结构的量子电子器件和电路
- 批准号:
341406-2009 - 财政年份:2011
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
- 批准号:82372269
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
- 批准号:82374540
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
自旋为1的Spin-Peierls模型的量子相变研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
- 批准号:82060566
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
- 批准号:81902698
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
- 批准号:11801499
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
血红素模型体系多自旋态可变电荷力场开发
- 批准号:21873034
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
Spin-Seebeck效应中多自由度耦合的非平衡动力学研究
- 批准号:11864001
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Demonstration of quantum state conversion between photon polarization and electron spin states by manipulation of a single photo-excited electron spin
通过操纵单个光激发电子自旋来演示光子偏振和电子自旋态之间的量子态转换
- 批准号:
22KJ2076 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Combining electron and nuclear magnetic resonance to track Alzheimer's amyloid-beta oligomer-to-fibril conversion
结合电子和核磁共振来追踪阿尔茨海默病β淀粉样蛋白寡聚物到原纤维的转化
- 批准号:
10662904 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Realization of macroscopic coherence of electron spins with persistent spin helix state
实现具有持续自旋螺旋态的电子自旋宏观相干性
- 批准号:
20H02563 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of the muSR-detected electron spin resonance method for elucidating the electronic state of muonium defects
开发 muSR 检测电子自旋共振方法来阐明 μ 缺陷的电子态
- 批准号:
20K12484 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2018
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Study towards complete Bell state measurement of semiconductor electron spin qubits
半导体电子自旋量子位的完整贝尔态测量研究
- 批准号:
18K14079 - 财政年份:2018
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Spin state evaluation of electrons field-emitted from graphene edges and development of a novel spin polarized electron source
石墨烯边缘场发射电子的自旋态评估以及新型自旋极化电子源的开发
- 批准号:
17K19053 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of calorimeter based on change in quantum state of electron spin
基于电子自旋量子态变化的量热计的研制
- 批准号:
17H03526 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2015
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual