Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
基本信息
- 批准号:RGPIN-2014-04858
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Currently, there is broad interest in harnessing properties of quantum objects for quantum computation and communication. Quantum computers are predicted to be exponentially more powerful than the classical counterparts for certain tasks, for example, for modeling complex chemicals like drugs, for solving optimization problems (e.g. flight schedules), and breaking encryption codes. Quantum communication promises absolutely secure information transfer between parties using entangled photons as a resource, whose inspection or manipulation by a third party cannot compromise the security of the message being sent. Eavesdropping on such a connection is fundamentally disallowed by the quantum physics law called "no-cloning" theorem.*Photons are the ideal quantum entities for transferring quantum information encoded, for example, in their polarization states. On the other hand, because photons do not interact easily, it is hard to manipulate and store them. These are necessary functionalities for building long distance quantum networks. These restrictions can be eased by using a quantum interface between photons and single electron spins trapped in quantum dots (QD), because electron spin states are much easier to store, manipulate, and measure using demonstrated state of the art techniques developed at NRC.*The process of quantum state transfer from a photon to an electron requires specially engineered quantum states to participate in the process. In particular, the valance band hole state should be split by an in-plane magnetic field, while conduction band electron spin up and spin down states should remain degenerate, i.e. have the same energy. In scientific terms, the electron g-factor (the proportionality coefficient between spin splitting energy and the magnetic field) should be close to zero. In this condition it is impossible to tell which of the electron spins is created, except through direct measurement of the spin. Therefore, a quantum superposition of spin states can be created by a photon of well-defined energy. The electron state created in this process maps out the photon quantum state. In other words, one bit of quantum information is transferred.*The first step in achieving this spin-to-photon interface is to realize special quantum dots with g*~0. This constitutes the main goal of the proposed research. We will develop double quantum dot devices made from the engineered g-factor materials and explore their feasibility for quantum information transfer between photons and electron spins. The electron g-factor will be measured using single spin resonance techniques by monitoring current through a double quantum dot device tuned to the so-called spin-blockade regime. In this regime current is suppressed due to the Pauli exclusion principle, which prevents a mobile electron from tunneling from one dot to the other dot if it already contains an electron of the same spin. Manipulation of spin states will be achieved by applying short microwave bursts and pulse sequences to the QD gates.*In this project we tackle a small but critical component of a greater worldwide activity directed onto the development of secure quantum networks. The necessary and lacking component is an effective spin to photon interface that would ease building efficient quantum memories and repeaters required for the distribution of entanglement in quantum networks. The results of this work will be easily adopted by a growing number of start-up companies and centers interested in quantum technologies.
目前,人们对利用量子物体的性质进行量子计算和通信产生了广泛的兴趣。 预计量子计算机在某些任务上比经典计算机更强大,例如,用于建模复杂的化学品,如药物,用于解决优化问题(例如航班时刻表),以及破解加密代码。 量子通信保证了使用纠缠光子作为资源的各方之间绝对安全的信息传输,第三方的检查或操纵不会损害发送消息的安全性。量子物理学中的“不可克隆”定理(no-cloning theorem)从根本上禁止在这种连接上进行克隆。光子是用于传输例如以其偏振态编码的量子信息的理想量子实体。另一方面,由于光子不容易相互作用,因此很难操纵和存储它们。这些都是构建长距离量子网络的必要功能。这些限制可以通过使用光子和量子点(QD)中捕获的单电子自旋之间的量子界面来缓解,因为电子自旋状态更容易存储,操纵和使用NRC开发的最先进技术进行测量。从光子到电子的量子态转移过程需要特别设计的量子态参与该过程。特别地,价带空穴状态应该被平面内磁场分裂,而导带电子自旋向上和自旋向下状态应该保持简并,即具有相同的能量。在科学术语中,电子g因子(自旋分裂能量和磁场之间的比例系数)应该接近于零。在这种情况下,除了通过直接测量自旋之外,不可能知道哪一个电子自旋被创建。因此,自旋态的量子叠加可以由具有明确能量的光子产生。在这个过程中产生的电子态映射出光子的量子态。换句话说,传输了一比特量子信息。实现这种自旋-光子界面的第一步是实现g*~0的特殊量子点。 这是拟议研究的主要目标。我们将开发由工程g因子材料制成的双量子点器件,并探索它们在光子和电子自旋之间进行量子信息传输的可行性。电子g因子将使用单自旋共振技术通过监测通过被调谐到所谓的自旋阻断机制的双量子点设备的电流来测量。在这种情况下,由于泡利不相容原理,电流被抑制,泡利不相容原理防止移动的电子从一个点隧穿到另一个点,如果它已经包含相同自旋的电子。对自旋态的操纵将通过向量子点门施加短微波突发和脉冲序列来实现。在这个项目中,我们解决了一个更大的全球活动的一个小而关键的组成部分,该活动旨在开发安全的量子网络。 必要的和缺乏的组件是一个有效的自旋光子接口,这将有助于建立有效的量子存储器和中继器所需的量子网络中的纠缠分布。这项工作的结果将很容易被越来越多对量子技术感兴趣的初创公司和中心采用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Studenikin, Sergei其他文献
Holes Outperform Electrons in Group IV Semiconductor Materials
- DOI:
10.1002/smsc.202200094 - 发表时间:
2023-03-02 - 期刊:
- 影响因子:0
- 作者:
Myronov, Maksym;Kycia, Jan;Studenikin, Sergei - 通讯作者:
Studenikin, Sergei
Single hole spin relaxation probed by fast single-shot latched charge sensing
- DOI:
10.1038/s42005-019-0113-0 - 发表时间:
2019-02-18 - 期刊:
- 影响因子:5.5
- 作者:
Bogan, Alex;Studenikin, Sergei;Hargett, Terry - 通讯作者:
Hargett, Terry
Landau-Zener-Stuckelberg-Majorana Interferometry of a Single Hole
- DOI:
10.1103/physrevlett.120.207701 - 发表时间:
2018-05-18 - 期刊:
- 影响因子:8.6
- 作者:
Bogan, Alex;Studenikin, Sergei;Hargett, Terry - 通讯作者:
Hargett, Terry
Studenikin, Sergei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Studenikin, Sergei', 18)}}的其他基金
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2022
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2021
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2019
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2016
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2015
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2014
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Quantum electronic devices and circuits based on InGaAs/InP ridge structures achieved via CBE nano-template technology
通过CBE纳米模板技术实现基于InGaAs/InP脊结构的量子电子器件和电路
- 批准号:
341406-2009 - 财政年份:2012
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Quantum electronic devices and circuits based on InGaAs/InP ridge structures achieved via CBE nano-template technology
通过CBE纳米模板技术实现基于InGaAs/InP脊结构的量子电子器件和电路
- 批准号:
341406-2009 - 财政年份:2011
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向电子自旋调控的不对称纳米电催化剂的设计与合成
- 批准号:JCZRYB202500489
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
自旋张量-动量耦合玻色-爱因斯坦凝聚体的新奇非线性量子现象
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁性范德瓦尔斯异质结的量子物性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多主元合金微结构尺寸耦合调控及其自旋电子下析氢机制研究
- 批准号:2025JJ50065
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
自旋张量-动量耦合冷原子气体的新奇量子现象研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
三角晶格量子磁体的新材料探索及分数化元激发研究
- 批准号:JCZRYB202500748
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
人工反铁磁中自旋波可调巨大非互易性传输的研究
- 批准号:JCZRYB202500910
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
二维磁性体系电解水活性的自旋调控机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
超表面耦合自旋系综的非厄米物理实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
二维pi-d耦合自旋网络结构的表面精准合成与量子磁性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Demonstration of quantum state conversion between photon polarization and electron spin states by manipulation of a single photo-excited electron spin
通过操纵单个光激发电子自旋来演示光子偏振和电子自旋态之间的量子态转换
- 批准号:
22KJ2076 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Combining electron and nuclear magnetic resonance to track Alzheimer's amyloid-beta oligomer-to-fibril conversion
结合电子和核磁共振来追踪阿尔茨海默病β淀粉样蛋白寡聚物到原纤维的转化
- 批准号:
10662904 - 财政年份:2023
- 资助金额:
$ 2.16万 - 项目类别:
Realization of macroscopic coherence of electron spins with persistent spin helix state
实现具有持续自旋螺旋态的电子自旋宏观相干性
- 批准号:
20H02563 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of the muSR-detected electron spin resonance method for elucidating the electronic state of muonium defects
开发 muSR 检测电子自旋共振方法来阐明 μ 缺陷的电子态
- 批准号:
20K12484 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study towards complete Bell state measurement of semiconductor electron spin qubits
半导体电子自旋量子位的完整贝尔态测量研究
- 批准号:
18K14079 - 财政年份:2018
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Spin state evaluation of electrons field-emitted from graphene edges and development of a novel spin polarized electron source
石墨烯边缘场发射电子的自旋态评估以及新型自旋极化电子源的开发
- 批准号:
17K19053 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of calorimeter based on change in quantum state of electron spin
基于电子自旋量子态变化的量热计的研制
- 批准号:
17H03526 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2016
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual
Electron spin state manipulation in quantum dot circuits with engineered g-factor for quantum memory and communication applications
量子点电路中的电子自旋态操纵,具有用于量子存储和通信应用的工程 g 因子
- 批准号:
RGPIN-2014-04858 - 财政年份:2015
- 资助金额:
$ 2.16万 - 项目类别:
Discovery Grants Program - Individual