New Avenues in Bioinorganic Chemistry: Electronic Structure, Catalysis, and Medicinal Inorganic Chemistry

生物无机化学的新途径:电子结构、催化和药用无机化学

基本信息

  • 批准号:
    RGPIN-2014-05240
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The underlying theme of this interdisciplinary bioinorganic chemistry research program is to study how metal ions function in designed coordination environments and in vivo. This is critical to two different areas: (1) the investigation of new transition metal complexes incorporating redox-active ligands for C-H oxidation catalysis, and (2) the design of metal-binding molecules that target a breakdown in metal ion homeostasis and resulting protein aggregation in neurodegenerative diseases and cancer. First, the industrial production of many chemicals depends upon discrete metal catalysts for critical rate and selectivity enhancement, and many of the most versatile metal catalysts today employ expensive noble metals (Rh, Ir, Pd, Pt), some of the scarcest and most expensive elements. We will develop compounds containing earth-abundant transition metals and redox-active ligands that are capable of catalyzing the selective incorporation of oxidized functions into organic molecules, which is an inherently difficult challenge. Bimetallic systems have great potential to promote this chemistry, exhibiting unique reactivity that can be ascribed in part to enhanced substrate binding, stabilization of reactive intermediates, and the presence of two metal ions in close proximity. Harnessing these features to promote specific small-molecule transformations will require detailed knowledge of the geometric and electronic structure of the studied systems. By a combination of spectroscopy, calculations, and reactivity studies, we aim to develop new and efficient catalytic systems with diverse industrial applications. The second direction targets protein misfolding and aggregation, which is a common disease pathway in a number of neurodegenerative diseases and cancer. Dysregulated metal ions are hypothesized to play an important role in this process and the aim of this fundamental research program is to study specific metal-ion biomolecule interactions relevant to Alzheimer’s, Parkinson’s, Creutzfeld Jacob (Mad Cow) disease, and cancer. Aggregation and precipitation of specific biomolecules is a shared disease pathway forming amorphous aggregates, and oligomers and fibrils with a common morphology. We will design molecules capable of binding metal ions (Fe, Cu, and Zn) while also exhibiting additional anti-aggregation properties via specific interactions with biomolecules relevant to the diseases under study. The overall goal of this research is to develop a set of guiding molecular design principles for mediating protein aggregation pathways in the presence of dysregulated metal ions. This fundamental bioinorganic chemistry research program addresses significant scientific challenges in catalysis. The ability to predict and control ligand radical chemistry will provide new research opportunities and a direct link to industrial applications. The study of biomolecule misfolding will provide important information on a process common to neurodegenerative diseases and cancer. These studies will inform the development of new molecules that inhibit aggregation processes relevant to these diseases. Overall, this research provides a unique opportunity to train the next generation of Canadian researchers in an interdisciplinary environment.
这个跨学科的生物无机化学研究项目的基本主题是研究金属离子如何在设计的协调环境和体内发挥作用。这对两个不同的领域至关重要:(1)研究含有氧化还原活性配体的新型过渡金属配合物,用于C-H氧化催化;(2)设计金属结合分子,以破坏金属离子稳态并导致神经退行性疾病和癌症中的蛋白质聚集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Storr, Tim其他文献

Modulation of the Aβ peptide aggregation pathway by KP1019 limits Aβ-associated neurotoxicity
  • DOI:
    10.1039/c4mt00252k
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jones, Michael R.;Mu, Changhua;Storr, Tim
  • 通讯作者:
    Storr, Tim
Defining the electronic and geometric structure of one-electron oxidized copper-bis-phenoxide complexes.
  • DOI:
    10.1021/ja804339m
  • 发表时间:
    2008-11-19
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Storr, Tim;Verma, Pratik;Pratt, Russell C.;Wasinger, Erik C.;Shimazaki, Yuichi;Stack, T. Daniel P.
  • 通讯作者:
    Stack, T. Daniel P.
Dual-function triazole-pyridine derivatives as inhibitors of metal-induced amyloid-β aggregation
  • DOI:
    10.1039/c2mt20113e
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jones, Michael R.;Service, Erin L.;Storr, Tim
  • 通讯作者:
    Storr, Tim
Double oxidation localizes spin in a Ni bis-phenoxyl radical complex
  • DOI:
    10.1039/c2dt32632a
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Dunn, Tim J.;Webb, Michael I.;Storr, Tim
  • 通讯作者:
    Storr, Tim
Synthesis, characterization and catalytic activity of copper(II) complexes containing a redox-active benzoxazole iminosemiquinone ligand
  • DOI:
    10.1039/c3dt00004d
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Balaghi, S. Esmael;Safaei, Elham;Storr, Tim
  • 通讯作者:
    Storr, Tim

Storr, Tim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Storr, Tim', 18)}}的其他基金

New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
  • 批准号:
    RGPIN-2019-06749
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
  • 批准号:
    RGPIN-2019-06749
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
  • 批准号:
    RGPIN-2019-06749
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
  • 批准号:
    RGPAS-2019-00054
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
  • 批准号:
    RGPIN-2019-06749
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
  • 批准号:
    RGPAS-2019-00054
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
New Avenues in Bioinorganic Chemistry: Electronic Structure, Catalysis, and Medicinal Inorganic Chemistry
生物无机化学的新途径:电子结构、催化和药用无机化学
  • 批准号:
    RGPIN-2014-05240
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
New Avenues in Bioinorganic Chemistry: Electronic Structure, Catalysis, and Medicinal Inorganic Chemistry
生物无机化学的新途径:电子结构、催化和药用无机化学
  • 批准号:
    RGPIN-2014-05240
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

SCT-TOD: Targeting secretin secretion - new avenues for the treatment of diabetes and obesity
SCT-TOD:靶向促胰液素分泌——治疗糖尿病和肥胖症的新途径
  • 批准号:
    EP/Y036824/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Fellowship
Genome editing technologies applied to LSFC: Exploring therapeutic avenues and improving diagnostics in Canada
基因组编辑技术应用于 LSFC:探索加拿大的治疗途径并改进诊断
  • 批准号:
    495765
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Operating Grants
Systematic Avenues to Sustainable Investing
可持续投资的系统途径
  • 批准号:
    2717541
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Studentship
New Avenues in Axion Cosmology
轴子宇宙学的新途径
  • 批准号:
    22K03595
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PROTAC enabled avenues for nasopharyngeal carcinoma (NPC) immunotherapy
PROTAC 为鼻咽癌 (NPC) 免疫治疗提供了途径
  • 批准号:
    2601028
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Studentship
Light-Driven Multicomponent C-C Couplings: New Avenues to Bioactive Molecules
光驱动多组分 C-C 联轴器:生物活性分子的新途径
  • 批准号:
    EP/V006401/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Research Grant
Emergence of hydrodynamics in many-body systems: new rigorous avenues from functional analysis
多体系统中流体动力学的出现:功能分析的新严格途径
  • 批准号:
    EP/W000458/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Research Grant
New therapeutic avenues in inflammatory arthritis: exploring the role of the adiponectin-PEPITEM pathway
炎症性关节炎的新治疗途径:探索脂联素-PEPITEM 通路的作用
  • 批准号:
    MR/T028025/1
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Research Grant
New avenues of multiple sclerosis treatment inspired by pregnancy
受怀孕启发的多发性硬化症治疗新途径
  • 批准号:
    456055988
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    WBP Position
EPRS1-related leukodystrophy: generation of a representative cellular model to study disease pathophysiology and potential therapeutic avenues using patient-derived iPSCs
EPRS1 相关脑白质营养不良:生成代表性细胞模型,利用患者来源的 iPSC 研究疾病病理生理学和潜在治疗途径
  • 批准号:
    458978
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了