Stochastic modeling in hydrology and reliability theory, and optimal control of dynamical systems
水文学和可靠性理论中的随机建模以及动力系统的最优控制
基本信息
- 批准号:RGPIN-2014-05273
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We mainly study three interrelated problems for dynamical systems in engineering.
1) Filtered renewal processes in hydrology. We have successfully used filtered Poisson processes to model river flows. However, our model implies that the time between events that significantly increase the river flow is a random variable having an exponential distribution. In reality, this hypothesis is generally false. Consequently, in order to improve the hydrological forecasts obtained from this model, we will generalize it by assuming that the flow evolves according to a filtered renewal process. We will have to derive new formulas to estimate the river flow. Furthermore, with an appropriate response function, filtered renewal processes are related to models used in queuing theory. We will make use of this fact to propose models that should yield even more accurate forecasts of river flows. In the case when analytical expressions cannot be derived, we will resort to simulations. The results that we will obtain are of great importance to dam managers, in particular.
2) Reliability. A basic problem in reliability theory is the determination of the distribution of the lifetime of a given product. To do so realistically, when the system is not repairable, the model used must be such that the remaining lifetime decreases with time. We want to use two-dimensional diffusion processes for this remaining lifetime, defined in such a way that the first component of the vectors is a deterministic decreasing function of the second component, which is a diffusion process. We will also consider other models for which the remaining lifetime decreases with time, such as conditioned one-dimensional diffusion processes and processes for which there is a reflecting boundary. We want to determine, in particular, the mean time required to reach a given boundary, that is, the mean-time-to-failure (MTTF). To do so, we must solve partial differential equations under the appropriate boundary conditions. Companies are interested in the MTTF in order to estimate the cost of the warranties they offer on their products. In the case of repairable systems, filtered renewal processes similar to the ones that we will use in hydrology, but with a different response function, can be proposed.
3) Stochastic optimal control. It is sometimes possible to obtain the optimal control of continuous stochastic processes until a random final time by making use of a theorem due to Whittle that enables us to express this optimal control in terms of a mathematical expectation computed for the corresponding uncontrolled processes. However, in order to apply Whittle's theorem, a certain relation between the control and noise matrices must be satisfied, which is rarely true in the most interesting applications. We want to solve this type of problems, sometimes called LQG homing, in the case when the relation in question is not satisfied. This entails solving the appropriate dynamic programming equation. Depending on the sign of a parameter in the cost function, the aim can be to minimize the time spent by the controlled process in the continuation region, or to maximize survival time instead. An application of these problems consists in computing the control that enables an aircraft to land optimally. Moreover, we want to extend LQG homing problems to the discrete-time case, which is often more realistic for the applications considered. Then, we will have to deal with nonlinear difference equations. Finally, we will also consider the problem of optimally controlling the filtered renewal processes used in hydrology and in reliability theory. In particular, we will determine the control that enables a dam manager to optimally release some water when the risk of flooding becomes too high.
我们主要研究工程中动力系统的三个相互关联的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lefebvre, Mario其他文献
On the Duration of an Epidemic.
- DOI:
10.1007/s12591-022-00626-7 - 发表时间:
2022-12-28 - 期刊:
- 影响因子:1
- 作者:
Lefebvre, Mario - 通讯作者:
Lefebvre, Mario
Lefebvre, Mario的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lefebvre, Mario', 18)}}的其他基金
Commande optimale stochastique avec applications en épidémiologie et en fiabilité
Commandeoptimalestochastiqueavecapplicationsen pidàmiologie et en fiabilità©
- 批准号:
RGPIN-2021-03795 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Commande optimale stochastique avec applications en épidémiologie et en fiabilité
命令最优随机性和应用程序在 pidémiologie et en fiabilité©
- 批准号:
RGPIN-2021-03795 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling in hydrology and reliability theory, and optimal control of dynamical systems
水文学和可靠性理论中的随机建模以及动力系统的最优控制
- 批准号:
RGPIN-2014-05273 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling in hydrology and reliability theory, and optimal control of dynamical systems
水文学和可靠性理论中的随机建模以及动力系统的最优控制
- 批准号:
RGPIN-2014-05273 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling in hydrology and reliability theory, and optimal control of dynamical systems
水文学和可靠性理论中的随机建模以及动力系统的最优控制
- 批准号:
RGPIN-2014-05273 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Stochastic modeling in hydrology and reliability theory, and optimal control of dynamical systems
水文学和可靠性理论中的随机建模以及动力系统的最优控制
- 批准号:
RGPIN-2014-05273 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Théorie et applications des processus de diffusion
扩散过程的理论和应用
- 批准号:
7989-2004 - 财政年份:2008
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Théorie et applications des processus de diffusion
扩散过程的理论和应用
- 批准号:
7989-2004 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Théorie et applications des processus de diffusion
扩散过程的理论和应用
- 批准号:
7989-2004 - 财政年份:2006
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Théorie et applications des processus de diffusion
扩散过程的理论和应用
- 批准号:
7989-2004 - 财政年份:2005
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
ORE-CZ: Integrating Vegetation Phenology to Understand the Sensitivity of Dynamic Water Storage to Drought Using Remote Sensing Data and Hydrology Modeling
ORE-CZ:利用遥感数据和水文学模型,整合植被物候学来了解动态蓄水对干旱的敏感性
- 批准号:
2228047 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Global Center on Climate Change and Water Energy Food Health Systems
全球气候变化和水能源食品卫生系统中心
- 批准号:
10835677 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
MCA: Urban-resolving Modeling System - Urban Heat Island, Urban Hydrology, Air Pollution, and Aerosol-Cloud Interaction Nexus
MCA:城市解析建模系统 - 城市热岛、城市水文、空气污染和气溶胶-云相互作用关系
- 批准号:
2322396 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
High Resolution Models of Groundwater Metal Exposures
地下水金属暴露的高分辨率模型
- 批准号:
10354269 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
E1 - Building Aboveground Strategies to Identify and Address Belowground Hot Spots for VOC Vapor Intrusion in Complex Urban Settings
E1 - 制定地上策略来识别和解决复杂城市环境中 VOC 蒸气入侵的地下热点
- 批准号:
10700798 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
E1 - Building Aboveground Strategies to Identify and Address Belowground Hot Spots for VOC Vapor Intrusion in Complex Urban Settings
E1 - 制定地上策略来识别和解决复杂城市环境中 VOC 蒸气入侵的地下热点
- 批准号:
10352962 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
A Novel Hydrology-based Malaria Transmission Model and Field Applications
基于水文学的新型疟疾传播模型及现场应用
- 批准号:
10576220 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
High Resolution Models of Groundwater Metal Exposures
地下水金属暴露的高分辨率模型
- 批准号:
10707888 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
The Impact of Drought on Arsenic Exposure and Cardiometabolic Outcomes in a Rural Aging Population
干旱对农村老龄人口砷暴露和心脏代谢结果的影响
- 批准号:
10462691 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Global-to-Regional Urban Climate Change Assessment and Modeling (GRUCCAM)
全球到区域城市气候变化评估和建模(GRUCCAM)
- 批准号:
21K14249 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists