Quantum information processing and quantum optics with superconducting circuits

量子信息处理和超导电路量子光学

基本信息

  • 批准号:
    RGPIN-2014-05505
  • 负责人:
  • 金额:
    $ 6.12万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The desire to understand and ultimately adapt one's environment is as old as the history of human civilization itself. The discovery of quantum mechanics in the early 20th century unveiled a new frontier for this endeavour, one based on exploiting the counterintuitive laws that govern the behaviour of atoms and subatomic particles. This led to some of the most revolutionary technologies of the modern era, including microelectronics, lasers, and magnetic resonance imagining (MRI). On a more fundamental level, our understanding has progressed to the point where experimental control of the quantum properties of individual atoms is now possible; the 2012 Nobel Prize in Physics recognized this revolutionary work. This "quantum control" is quite literally control and adaptation of the environment at its most fundamental level -- the detection and manipulation of individual quanta of energy. Despite these remarkable advances, the potential for quantum mechanics to transform society is far from being exhausted: we currently stand on the verge of a quantum revolution that promises to be as profound as the breakthroughs of the past. Indeed, it is now recognized that quantum effects can be harnessed to create computers that would be immensely more powerful than current ones. In some cases, these quantum computers could take days to solve problems that would require today’s fastest computers billions of years to complete. While the realization of such computers is challenging, the past few years have seen remarkable progress in making "man-made" devices (e.g. circuits printed on a chip) act purely quantum mechanically and interact strongly with quantum particles of light. This emerging field of engineered quantum systems uses advances in micro-fabrication of superconducting electrical circuits and microwave engineering to achieve a level of quantum control that far exceeds what is possible with "natural" quantum systems. Moreover, these man-made quantum systems can be designed from the bottom up, allowing an almost infinite range of possibilities: we are not simply limited to the options provided by nature. The goal of this research program is to push further our fundamental understanding of these man-made quantum systems and to find new ways to exploit their unique properties. Because these superconducting devices harness effects that are at the foundation of our understanding of the quantum theory, this exploration will yield a deeper understanding of the quantum world, and by extension the world we live in. Beyond quantum computers, it will also open the door to remarkable new technologies based on actively exploiting quantum effects. In the next five years, we will focus on circuit quantum electrodynamics, an engineered quantum system based on microfabricated superconducting circuits that was first proposed by colleagues and myself. Because much of the recent advances in the field are linked to its development, this is an exciting time to study this system. Circuit quantum electrodynamics is not only one of the most promising quantum computer architectures, it has also bridged the gap between different fields of physics, namely mesoscopic physics and quantum optics. With NSERC support we will make advances in three major aspects of the physics of these devices: 1) Quantum optics in the microwave frequency range. 2) Improved measurement of engineered quantum systems. 3) Quantum information processing with circuit quantum electrodynamics. While theoretical in nature this program is heavily connected to experimental efforts in many of the field's top laboratories in Canada and worldwide. Our findings will help in bringing new quantum technology to fruition, while assuring Canada a leading role in the emerging quantum revolution.
了解并最终适应环境的愿望与人类文明本身的历史一样古老。世纪初量子力学的发现为这一努力开辟了一个新的前沿,一个基于利用支配原子和亚原子粒子行为的违反直觉的定律的前沿。这导致了现代一些最具革命性的技术,包括微电子,激光和磁共振成像(MRI)。在更基本的层面上,我们的理解已经发展到可以通过实验控制单个原子的量子特性的地步; 2012年诺贝尔物理学奖表彰了这一革命性的工作。这种“量子控制”实际上是在最基本的层面上对环境的控制和适应--对单个能量量子的检测和操纵。 尽管有这些显著的进步,量子力学改变社会的潜力还远未耗尽:我们目前正站在量子革命的边缘,这场革命有望像过去的突破一样深刻。事实上,现在人们已经认识到,量子效应可以用来制造比现在的计算机强大得多的计算机。在某些情况下,这些量子计算机可能需要几天时间来解决今天最快的计算机需要数十亿年才能完成的问题。虽然实现这种计算机具有挑战性,但过去几年在制造“人造”设备(例如,印刷在芯片上的电路)方面取得了显着进展,这些设备纯粹是量子力学的,并与光的量子粒子强烈相互作用。这个新兴的工程量子系统领域利用超导电路和微波工程的微制造技术,实现了远远超过“自然”量子系统的量子控制水平。此外,这些人造量子系统可以自下而上设计,允许几乎无限的可能性:我们不仅仅局限于自然提供的选择。 这项研究计划的目标是进一步推动我们对这些人造量子系统的基本理解,并找到利用其独特性质的新方法。因为这些超导设备利用的效应是我们理解量子理论的基础,所以这种探索将使我们更深入地了解量子世界,进而了解我们生活的世界。除了量子计算机,它还将为基于积极利用量子效应的显着新技术打开大门。 在接下来的五年里,我们将专注于电路量子电动力学,这是一个基于微制造超导电路的工程量子系统,由我和同事首次提出。由于该领域的许多最新进展都与其发展有关,因此这是研究该系统的令人兴奋的时刻。电路量子电动力学不仅是最有前途的量子计算机体系结构之一,而且它还在介观物理和量子光学之间架起了一座差距的桥梁。在NSERC的支持下,我们将在这些器件的物理学的三个主要方面取得进展:1)微波频率范围内的量子光学。2)改进工程量子系统的测量。3)量子信息处理与电路量子电动力学。虽然理论上的性质,这一计划是密切相关的实验工作,在许多该领域的顶级实验室在加拿大和世界各地。我们的发现将有助于实现新的量子技术,同时确保加拿大在新兴的量子革命中发挥主导作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blais, Alexandre其他文献

Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction
  • DOI:
    10.1103/physrevlett.115.203601
  • 发表时间:
    2015-11-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Didier, Nicolas;Bourassa, Jerome;Blais, Alexandre
  • 通讯作者:
    Blais, Alexandre
Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium.
  • DOI:
    10.1038/ncomms12748
  • 发表时间:
    2016-09-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Joseph, Julie;Ametepe, Emmanuelle S.;Haribabu, Naveen;Agbayani, Gerard;Krishnan, Lakshmi;Blais, Alexandre;Sad, Subash
  • 通讯作者:
    Sad, Subash
Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis
  • DOI:
    10.1096/fj.15-277053
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Chakroun, Imane;Yang, Dabo;Blais, Alexandre
  • 通讯作者:
    Blais, Alexandre
Perfect squeezing by damping modulation in circuit quantum electrodynamics
  • DOI:
    10.1103/physreva.89.013820
  • 发表时间:
    2014-01-17
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Didier, Nicolas;Qassemi, Farzad;Blais, Alexandre
  • 通讯作者:
    Blais, Alexandre
ASK-1 (apoptosis signal-regulating kinase 1) is a direct E2F target gene
  • DOI:
    10.1042/bj20051981
  • 发表时间:
    2006-06-15
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Kherrouche, Zoulika;Blais, Alexandre;Monte, Didier
  • 通讯作者:
    Monte, Didier

Blais, Alexandre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blais, Alexandre', 18)}}的其他基金

Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
  • 批准号:
    RGPIN-2019-05790
  • 财政年份:
    2022
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
  • 批准号:
    RGPIN-2019-05790
  • 财政年份:
    2021
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Arginine methylation and the cell cycle
精氨酸甲基化和细胞周期
  • 批准号:
    RGPIN-2016-03672
  • 财政年份:
    2021
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
  • 批准号:
    DGDND-2019-05790
  • 财政年份:
    2021
  • 资助金额:
    $ 6.12万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
  • 批准号:
    RGPIN-2019-05790
  • 财政年份:
    2020
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Arginine methylation and the cell cycle
精氨酸甲基化和细胞周期
  • 批准号:
    RGPIN-2016-03672
  • 财政年份:
    2020
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
  • 批准号:
    DGDND-2019-05790
  • 财政年份:
    2020
  • 资助金额:
    $ 6.12万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
  • 批准号:
    RGPIN-2019-05790
  • 财政年份:
    2019
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
  • 批准号:
    DGDND-2019-05790
  • 财政年份:
    2019
  • 资助金额:
    $ 6.12万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Arginine methylation and the cell cycle
精氨酸甲基化和细胞周期
  • 批准号:
    RGPIN-2016-03672
  • 财政年份:
    2019
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
面向英汉双向跨语言图像检索的文本分析关键技术研究
  • 批准号:
    61170095
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
基于等值面法向量信息的医学图像自动配准算法研究及其临床应用
  • 批准号:
    60872103
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
协同模板中的约束信息可视化
  • 批准号:
    60573174
  • 批准年份:
    2005
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目
面向Web信息检索的随机P2P拓扑模型及语义网重构技术研究
  • 批准号:
    60573142
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目
量子信息资源理论与应用研究
  • 批准号:
    60573008
  • 批准年份:
    2005
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
无线网络中多用户合作分集技术研究
  • 批准号:
    60472079
  • 批准年份:
    2004
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
  • 批准号:
    23H01131
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nanoscale quantum physics and quantum information processing with semiconductor quantum dots
纳米量子物理与半导体量子点的量子信息处理
  • 批准号:
    2891758
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Studentship
Application of deterministic dopant devices to probabilistic information processing, quantum computing/measurement
确定性掺杂器件在概率信息处理、量子计算/测量中的应用
  • 批准号:
    23H00169
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Solid state optical nonlinearities for quantum information processing
用于量子信息处理的固态光学非线性
  • 批准号:
    2887452
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Studentship
Research on Magnonics Contributing to Quantum Computation for Next-Generation Information Processing
磁振学研究有助于下一代信息处理的量子计算
  • 批准号:
    23K19115
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Investigating the hybrid quantum magnonic system for next-generation quantum information processing
研究下一代量子信息处理的混合量子磁力系统
  • 批准号:
    23KF0139
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum Walks and Cellular Automata for Quantum Information Processing
用于量子信息处理的量子行走和元胞自动机
  • 批准号:
    2310794
  • 财政年份:
    2023
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Standard Grant
Taming the Noisy Environment for Photon-Mediated Operations in Quantum Information Processing
驯服量子信息处理中光子介导操作的噪声环境
  • 批准号:
    2243742
  • 财政年份:
    2022
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Continuing Grant
Ultra-sensitive biomagnetic sensor based on spin wave quantum interference and stochastic resonance information processing
基于自旋波量子干涉和随机共振信息处理的超灵敏生物磁传感器
  • 批准号:
    22K18804
  • 财政年份:
    2022
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nanoscale Semiconductor Systems for Quantum Information Processing
用于量子信息处理的纳米级半导体系统
  • 批准号:
    568945-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.12万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了