Markov Chains and Spectral Graph Theory: Interactions and Applications

马尔可夫链和谱图论:相互作用和应用

基本信息

  • 批准号:
    RGPIN-2014-06123
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

A Markov chain is a certain type of probabilistic model, and these models are ubiquitous in science and engineering, finding applications in such diverse areas as computational drug design, vehicle traffic networks, and ranking of web pages. The Kemeny constant is a key quantity associated with a Markov chain, and it provides, in some sense, a global measure of the overall short term efficiency of the Markov chain. Despite having been introduced more than 50 years ago, relatively little is known about the Kemeny constant, and the proposed research programme will undertake a thorough investigation of that quantity. By illuminating the mathematical properties of the Kemeny constant, I hope to provide insights into the design of Markov chains with desirable efficiency properties. A graph (or network) is a mathematical structure that records information about objects (called vertices) that are related in some way. Examples include Facebook users that are related by 'friendship', proteins in a cell that perform some function together, and terminals in an electrical network that are connected by resistors. There is a natural way to associate a Markov chain with any graph, and it turns out that certain parameters of the Markov chain can be used to measure how central each vertex is in the graph. This Markov chain centrality has been investigated empirically, but at present there is little in the way of rigorous theory on the topic. The proposed programme of research will develop the mathematical theory of this Markov chain centrality, thus enhancing the understanding of the graph-theoretic properties that are reflected by that centrality, and informing the use of that centrality in practical applications. The notion of a quantum walk arises in a so-called quantum wire -- a model for information transport inside a quantum computer. The fidelity of a quantum walk measures the probability that the information is transferred correctly along the quantum wire. This research programme will also investigate the sensitivity of the fidelity in terms of the time taken for the information to transfer, and the physical parameters associated with the quantum wire. The results will help to inform the design and implementation of quantum walks. This programme of research is expected to have impact in several different domains. Researchers working on Markov chains from the theoretical side, as well as scientists and engineers applying Markov chain techniques in practical settings (such as traffic modelling, migration models and network analysis) will benefit from the research on the Kemeny constant, as that quantity will become more deeply understood, and will hence be a more useful tool. The research on Markov chain centrality will, by developing the mathematical theory of that centrality, have an impact on network science and its numerous applications. Finally the research on quantum walks will have an impact in the area of quantum computing.
马尔可夫链是一种特定类型的概率模型,这些模型在科学和工程中无处不在,在计算药物设计、车辆交通网络和网页排名等不同领域都有应用。Kemeny常数是与马尔可夫链相关的一个关键量,它在某种意义上提供了马尔可夫链整体短期效率的全局度量。尽管凯梅尼常数是50多年前提出的,但人们对它的了解相对较少,拟议的研究计划将对该常数进行彻底的调查。通过阐明Kemeny常数的数学性质,我希望为具有理想效率性质的马尔可夫链的设计提供见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirkland, Stephen其他文献

Impact of Varying Community Networks on Disease Invasion
不同的社区网络对疾病入侵的影响
  • DOI:
    10.1137/20m1328762
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Kirkland, Stephen;Shuai, Zhisheng;van den Driessche, P.;Wang, Xueying
  • 通讯作者:
    Wang, Xueying

Kirkland, Stephen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirkland, Stephen', 18)}}的其他基金

Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
  • 批准号:
    RGPIN-2019-05408
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Summer Workshop in Mathematics
夏季数学研讨会
  • 批准号:
    515914-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    PromoScience
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
  • 批准号:
    RGPIN-2014-06123
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Summer Workshop in Mathematics
夏季数学研讨会
  • 批准号:
    515914-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    PromoScience
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
  • 批准号:
    RGPIN-2014-06123
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Summer Workshop in Mathematics
夏季数学研讨会
  • 批准号:
    515914-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    PromoScience
Markov Chains and Spectral Graph Theory: Interactions and Applications
马尔可夫链和谱图论:相互作用和应用
  • 批准号:
    RGPIN-2014-06123
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Impact of Dynamic Capabilities, Technological Readiness and Information Exchange Capabilities on the Resilience and Performance of Circular Supply Chains
动态能力、技术准备度和信息交换能力对循环供应链的弹性和绩效的影响
  • 批准号:
    24K05087
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Place-based approaches to sustainable food supply chains: scaling socio-technical innovations as enablers for enhancing public sector food procurement
基于地方的可持续食品供应链方法:扩大社会技术创新作为加强公共部门食品采购的推动力
  • 批准号:
    ES/Z502807/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Integration of low-carbon hydrogen value chains for hard-to-decarbonise sectors with wider energy systems: Whole-systems modelling and optimisation
将难以脱碳行业的低碳氢价值链与更广泛的能源系统整合:全系统建模和优化
  • 批准号:
    EP/W033275/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
STREAM 1: Park Royal PBIAA Net-Zero Food Supply Chains
流程 1:Park Royal PBIAA 净零食品供应链
  • 批准号:
    EP/Y023846/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Non-tariff measures and the Global Value Chains
非关税措施和全球价值链
  • 批准号:
    24K16361
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
  • 批准号:
    10104748
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Launchpad
Prototype of "PackPro" - software to calculate and link carbon footprints in complex FMCG supply chains
“PackPro”原型 - 用于计算和链接复杂快速消费品供应链中碳足迹的软件
  • 批准号:
    10098822
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative R&D
TRANSSition - Transforming industrial sugar supply chains
TRANSSition - 转变工业糖供应链
  • 批准号:
    10091902
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative R&D
Human rights in global supply chains: Measuring the effectiveness of home state regulatory models on corporate behaviour
全球供应链中的人权:衡量母国监管模式对企业行为的有效性
  • 批准号:
    AH/Y007565/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了