A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
基本信息
- 批准号:RGPIN-2015-03681
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal involves three fields of mathematics: complex analysis, Teichmuller theory, and conformal field theory. Here is an explanation of these fields, together with an explanation of how my research fits in the larger context. This is aimed at a layperson.
In brief, this proposal contains a new approach to conformal invariance (explained below), which unifies ideas in the three fields.
Complex analysis is the study of calculus in the setting of complex numbers. Like all branches of mathematics, it has many unexpected consequences for many fields. Complex analysis is particularly ubiquitous: it is an indispensable tool in engineering, physics, astronomy, and geology among other fields, for example because of its use in the theory of Fourier series and approximations. Research in pure mathematics in general can and usually does proceed without concern for applications of this kind; however, the research spins off unexpected applications every few decades. Much of complex analysis research concerns the study of families of complex analytic mappings. Teichmuller theory is the study families of Riemann surfaces, which are two-dimensional surfaces along with a definition of angle. Riemann surfaces are central to the geometric understanding of complex analysis.
My own research is on conformal invariants. The idea of an invariant is a powerful tool in mathematics (and physics); it is a quantity which is unchanged under some transformation, and is usually associated with geometric information. Conformal invariants are quantities invariant under complex analytic transformations. This proposal regards an approach to conformal invariance which unifies ideas in complex analysis, Teichmuller theory, and conformal field theory.
In physics, conformal field theory is the study of quantum and mechanical systems which possess conformal invariance. The mathematical study of conformal field theory began in the late 80s and early 90s, and continues to generate exciting new ideas in pure mathematics, especially in algebra and geometry. I study certain families of Riemann surfaces which arise in conformal field theory. David Radnell and I proved that these families equivalent to known families in a branch of complex analysis and geometry called Teichmuller theory. This allowed us to solve some outstanding analytic issues in the mathematical formulation of conformal field theory, and also led to many new results in geometric function theory and Teichmuller theory. This proposal investigates further connections in light of the new approach to conformal invariance.
The work in this proposal will advance both complex analysis and the mathematical formulation of conformal field theory. Furthermore it creates new unexpected connections between these fields.
这一建议涉及三个数学领域:复分析、泰希穆勒理论和保形场论。下面是对这些领域的解释,以及我的研究如何适应更大的背景。这是针对外行的。
简而言之,这一提议包含了一种新的共形不变性方法(如下所述),它统一了这三个领域的思想。
复数分析是在复数的背景下研究微积分。与数学的所有分支一样,它对许多领域都有许多意想不到的结果。复数分析尤其普遍:它是工程、物理、天文学和地质学等领域不可或缺的工具,例如,因为它在傅立叶级数和近似理论中的使用。在一般情况下,纯数学的研究可以而且通常不考虑这类应用;然而,这项研究每隔几十年就会产生意想不到的应用。许多复杂分析研究都与复杂解析映射族的研究有关。TeichMuller理论是黎曼曲面的研究族,黎曼曲面是具有角度定义的二维曲面。黎曼曲面是复杂分析的几何理解的核心。
我自己的研究是关于共形不变量的。不变量的概念在数学(和物理)中是一个强大的工具;它是一个在某种变换下不变的量,通常与几何信息有关。共形不变量是复解析变换下的量不变量。本文提出了一种将复分析、TeichMuller理论和共形场论中的思想统一起来的共形不变量的方法。
在物理学中,共形场理论是对具有共形不变性的量子和力学系统的研究。共形场理论的数学研究始于80年代末和90年代初,并在纯数学中不断产生令人兴奋的新思想,特别是在代数和几何中。我研究了共形场理论中出现的某些黎曼曲面族。我和大卫·拉德内尔证明了这些族等价于复分析和几何学的一个分支--泰希穆勒理论。这使得我们能够解决共形场论数学公式中的一些突出的分析问题。并在几何函数论和TeichMuller理论中得到了许多新的结果。--
这项工作将推动保形场理论的复杂分析和数学表述。此外,它还在这些场之间建立了新的意想不到的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Schippers, Eric其他文献
Schippers, Eric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Schippers, Eric', 18)}}的其他基金
Differential and Integral Operators on Riemann Surfaces and the Geometry and Algebra of Sewing
黎曼曲面上的微分和积分算子以及缝纫几何和代数
- 批准号:
RGPIN-2021-03351 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Differential and Integral Operators on Riemann Surfaces and the Geometry and Algebra of Sewing
黎曼曲面上的微分和积分算子以及缝纫几何和代数
- 批准号:
RGPIN-2021-03351 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nested domains and Riemann surfaces in geometric function theory
几何函数理论中的嵌套域和黎曼曲面
- 批准号:
312586-2010 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nested domains and Riemann surfaces in geometric function theory
几何函数理论中的嵌套域和黎曼曲面
- 批准号:
312586-2010 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nested domains and Riemann surfaces in geometric function theory
几何函数理论中的嵌套域和黎曼曲面
- 批准号:
312586-2010 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nested domains and Riemann surfaces in geometric function theory
几何函数理论中的嵌套域和黎曼曲面
- 批准号:
312586-2010 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
量化 domain 的拓扑性质
- 批准号:11771310
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
- 批准号:50908133
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
- 批准号:50671047
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
- 批准号:30470298
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Conformal Approach to Modelling Random Aggregation
随机聚合建模的共形方法
- 批准号:
EP/T027940/2 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Research Grant
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
- 批准号:
RGPIN-2022-04104 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
- 批准号:
DGECR-2022-00449 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Launch Supplement
Conformal Approach to Modelling Random Aggregation
随机聚合建模的共形方法
- 批准号:
EP/T027940/1 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Research Grant
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Systematic evaluation of predicted outcomes and costs to inform clinical and policy decision making for emerging postmastectomy radiotherapies
对预测结果和成本进行系统评估,为新兴乳房切除术后放射治疗的临床和政策决策提供信息
- 批准号:
9324723 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
A new approach to conformal invariants in complex function theory
复变函数理论中共形不变量的新方法
- 批准号:
RGPIN-2015-03681 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Low-cost Extremely Thinlayer Absorber (ETA) Solar Cell: A Novel approach to make the conformal ETA Layers
低成本极薄层吸收器 (ETA) 太阳能电池:一种制作共形 ETA 层的新方法
- 批准号:
EP/F057342/1 - 财政年份:2008
- 资助金额:
$ 0.8万 - 项目类别:
Research Grant