Analysis and Optimization with Complex Computer Models

复杂计算机模型的分析和优化

基本信息

  • 批准号:
    RGPIN-2015-03895
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

This proposal and my research program is focussed on developing tools for understanding and quantifying uncertainty in complex mathematical models. The scientific approach is to build a computationally efficient surrogate model that is used to emulate the output of the complex model. The surrogate model is used in place of the true model for tasks such as prediction, optimization and sensitivity analysis. Treating the computer code as unknown, a Gaussian process prior is used to represent the uncertainty in modelling this unknown function. Although Gaussian process surrogate models are now routinely used by researchers, there are still many fundamental issues related to these models that need to be better understood. The main objective of this proposal is to develop a novel framework for Bayesian sequential design that can be used for virtually any criteria while allowing for a complete characterization of the uncertainty when implementing a sequential procedure. Given the rapid advancements in computational techniques it is imperative that sequential procedures can be used simultaneously collect multiple trials as opposed to the traditional approach of collecting samples one-at-a-time. Additionally, other aspects of the program are focused on fundamental issues relating to fitting the Gaussian process, which requires either optimizing the likelihood or running a Markov chain to obtain samples from the posterior distribution. In either case the exact form of the model, including parameterization and the number of required runs, will have a significant impact on efficiently fitting the model. Additional methodological developments of modelling huge spatial fields and developing new methods for fitting non-stationary models are motivated by the problem of understanding star formation. The work outlined in the program to follow has the potential to transform the way researchers tackle problems in surrogate modelling, which will have tremendous impact on the scientific community working on surrogate models. Additionally this impact will translate to the much wider community of modeller and decision makers using complex models. Policy makers use complex models to study and understand behaviour that cannot be directly studied across virtually every area of science and engineering. In order to make informed decisions these models are used to investigate various what-if scenarios. Reliable and efficient surrogate modelling will allow decision makers to investigate a significantly larger number of scenarios while also providing a framework to better understand and quantify uncertainty in various problems. This will provide a benefit to Canada and the world by helping facilitate the use of quantitative data to make informed decisions.
这个建议和我的研究计划的重点是开发工具,用于理解和量化复杂数学模型中的不确定性。科学的方法是建立一个计算效率高的代理模型,用于模拟复杂模型的输出。代理模型用于代替真实模型进行预测、优化和灵敏度分析等任务。将计算机代码视为未知的,高斯过程先验被用来表示建模这个未知函数的不确定性。虽然高斯过程代理模型现在经常被研究人员使用,但仍然有许多与这些模型相关的基本问题需要更好地理解。该提案的主要目标是开发一种新的贝叶斯序贯设计框架,该框架可用于几乎任何标准,同时允许在实施序贯程序时对不确定性进行完整表征。鉴于计算技术的快速发展,必须使用顺序程序同时收集多个试验,而不是一次收集一个样品的传统方法。此外,该程序的其他方面集中在与拟合高斯过程相关的基本问题上,这需要优化可能性或运行马尔可夫链以从后验分布中获得样本。在任何一种情况下,模型的确切形式,包括参数化和所需的运行次数,将对有效拟合模型产生重大影响。对巨大空间场进行建模和开发拟合非平稳模型的新方法的其他方法学发展的动机是理解星星形成的问题。接下来的计划中概述的工作有可能改变研究人员解决替代模型问题的方式,这将对研究替代模型的科学界产生巨大影响。此外,这种影响将转化为更广泛的社区建模和决策者使用复杂的模型。政策制定者使用复杂的模型来研究和理解行为,这些行为无法在几乎所有的科学和工程领域直接研究。为了做出明智的决策,这些模型用于研究各种假设场景。可靠和有效的替代模型将使决策者能够调查大量的情景,同时也提供了一个框架,以更好地理解和量化各种问题中的不确定性。这将有助于促进使用定量数据做出明智的决定,从而使加拿大和世界受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Loeppky, Jason其他文献

Loeppky, Jason的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Loeppky, Jason', 18)}}的其他基金

Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    RGPIN-2015-03895
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    477881-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    477881-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Identifying high risk users in online communities
识别在线社区中的高风险用户
  • 批准号:
    500800-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    RGPIN-2015-03895
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    477881-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Generating and Understanding Learning Outcome data in Statistics
生成和理解统计中的学习成果数据
  • 批准号:
    484112-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Modelling fatigue of forest fighter pilots
森林战斗机飞行员的疲劳建模
  • 批准号:
    485110-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Design and analysis of experiments in large scale computer simulations
大规模计算机模拟实验的设计和分析
  • 批准号:
    341340-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Design and analysis of experiments in large scale computer simulations
大规模计算机模拟实验的设计和分析
  • 批准号:
    341340-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    RGPIN-2015-03895
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    477881-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    477881-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    RGPIN-2015-03895
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Optimization with Complex Computer Models
复杂计算机模型的分析和优化
  • 批准号:
    477881-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Characterization, Analysis, Design and Optimization of Complex Engineering Systems
复杂工程系统的表征、分析、设计和优化
  • 批准号:
    1000205203-2007
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了