Non-stationary Signal Feature Extraction and Analysis

非平稳信号特征提取与分析

基本信息

  • 批准号:
    RGPIN-2015-03990
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Signal processing continues to play a fundamental role in many technological innovations and advancements related to speech, multimedia, healthcare, defense, security, telecommunications, Internet,  and energy systems. For the past 15 years, the Signal Analysis Research (SAR) Group at Ryerson University is involved in developing various innovative techniques and algorithms for processing and analysis of speech, audio, multimedia and biomedical signals. The underlying characteristics of signals involved with these systems is that they are complex, typically long duration, difficult to interpret, and have time-varying properties. In order to extract valuable information (features) from these signals and characterize events of interest, and to automatically classify patterns, sophisticated signal analysis algorithms (and analytical tools) need to be designed. The proposed NSERC Discovery Grant research will systematically investigate and develop mathematical methods, algorithms and tools to map 1-dimensional (1D) signals into higher dimensions for automatically extracting signal features at multiple levels, which are otherwise difficult or impossible to extract from conventional techniques. It is envisioned the mathematical transformation of signals to higher dimensions and the subsequent feature extraction algorithms will reveal underlying signal generation/modification mechanisms that could be useful in recognizing hidden/subtle signatures for better recognition and classification applications. The extracted signal features will be further coupled with appropriate machine learning algorithms in providing enhanced and robust recognition and classification performance efficiencies. Automatic feature extraction and analysis has lots of practical applications, and is the foundation of everyday systems encountered in speech, audio, multimedia,  biometrics and many other intelligent systems. The algorithms will be applied to real world datasets collected in our lab and other open source databases. The algorithms and the databases will also be shared with other interested research groups for the benefit of their specific domain of application (e.g., big data analytics in energy or health sector). The research program will also train a large number of highly qualified personnel who could eventually lead technological advancement in various industry and research sectors that are crucial for the societal well-being and economic prosperity of Canada.
信号处理在与语音、多媒体、医疗保健、国防、安全、电信、互联网和能源系统相关的许多技术创新和进步中继续发挥着重要作用。在过去的15年里,瑞尔森大学的信号分析研究(SAR)小组参与开发各种创新技术和算法,用于处理和分析语音,音频,多媒体和生物医学信号。与这些系统相关的信号的基本特征是它们是复杂的,通常持续时间长,难以解释,并且具有时变特性。为了从这些信号中提取有价值的信息(特征)并表征感兴趣的事件,以及自动分类模式,需要设计复杂的信号分析算法(和分析工具)。拟议的NSERC发现资助研究将系统地调查和开发数学方法,算法和工具,将一维(1D)信号映射到更高的维度,以自动提取多个级别的信号特征,这些特征难以或不可能从传统技术中提取。可以预见的是,信号到更高维度的数学变换和随后的特征提取算法将揭示潜在的信号生成/修改机制,这可能有助于识别隐藏/微妙的签名,以获得更好的识别和分类应用。所提取的信号特征将进一步与适当的机器学习算法相结合,以提供增强的和鲁棒的识别和分类性能效率。自动特征提取和分析具有广泛的实际应用,是语音、音频、多媒体、生物识别等智能系统的基础。这些算法将应用于我们实验室和其他开源数据库中收集的真实的世界数据集。算法和数据库也将与其他感兴趣的研究小组共享,以利于其特定的应用领域(例如,能源或卫生部门的大数据分析)。该研究计划还将培养大量高素质的人才,他们最终将领导对加拿大社会福祉和经济繁荣至关重要的各个工业和研究部门的技术进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krishnan, Sridhar其他文献

Advanced signal analysis for the detection of periodic limb movements from bilateral ankle actigraphy
  • DOI:
    10.1111/jsr.12438
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Athavale, Yashodhan;Krishnan, Sridhar;Boulos, Mark I.
  • 通讯作者:
    Boulos, Mark I.
A Joint Time-Frequency and Matrix Decomposition Feature Extraction Methodology for Pathological Voice Classification
Trends in human activity recognition with focus on machine learning and power requirements
  • DOI:
    10.1016/j.mlwa.2021.100072
  • 发表时间:
    2021-09-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen, Binh;Coelho, Yves;Krishnan, Sridhar
  • 通讯作者:
    Krishnan, Sridhar
Effective Dysphonia Detection Using Feature Dimension Reduction and Kernel Density Estimation for Patients with Parkinson's Disease
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
  • 作者:
    Liu, Kaizhi;Wu, Meihong;Chen, Jian;Krishnan, Sridhar;
  • 通讯作者:
Combining Temporal Features by Local Binary Pattern for Acoustic Scene Classification

Krishnan, Sridhar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krishnan, Sridhar', 18)}}的其他基金

Biomedical Signal Sensing and Analysis
生物医学信号传感与分析
  • 批准号:
    RGPIN-2020-04628
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Biomedical Signal Sensing and Analysis
生物医学信号传感与分析
  • 批准号:
    RGPIN-2020-04628
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Biomedical Signal Sensing and Analysis
生物医学信号传感与分析
  • 批准号:
    RGPIN-2020-04628
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Robust electronic scoring analysis system for recreational and professional taekwondo sports
适用于休闲和专业跆拳道运动的强大电子评分分析系统
  • 批准号:
    505474-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Robust electronic scoring analysis system for recreational and professional taekwondo sports
适用于休闲和专业跆拳道运动的强大电子评分分析系统
  • 批准号:
    505474-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Robust electronic scoring analysis system for recreational and professional taekwondo sports
适用于休闲和专业跆拳道运动的强大电子评分分析系统
  • 批准号:
    505474-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Collaborative Research and Development Grants
Biomedical Signal Analysis
生物医学信号分析
  • 批准号:
    1000228251-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

自守L-函数亚凸界估计的研究
  • 批准号:
    11601271
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
  • 批准号:
    70471078
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Digital signal processing for non-stationary signals via sampled-data control theory
通过采样数据控制理论对非平稳信号进行数字信号处理
  • 批准号:
    15H04021
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New methodology in signal processing via sampled-data control theory and its development in new non-stationary system theory
通过采样数据控制理论进行信号处理的新方法及其在新非平稳系统理论中的发展
  • 批准号:
    18360203
  • 财政年份:
    2006
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adaptive time-frequency analysis for non-stationary signal feature extraction and classification
用于非平稳信号特征提取和分类的自适应时频分析
  • 批准号:
    318773-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Adaptive time-frequency analysis for non-stationary signal feature extraction and classification
用于非平稳信号特征提取和分类的自适应时频分析
  • 批准号:
    318773-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Non-stationary signal analysis using adaptive time-frequency distributions
使用自适应时频分布的非平稳信号分析
  • 批准号:
    227730-2000
  • 财政年份:
    2004
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Non-stationary signal analysis using adaptive time-frequency distributions
使用自适应时频分布的非平稳信号分析
  • 批准号:
    227730-2000
  • 财政年份:
    2003
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了