Biomedical Signal Sensing and Analysis

生物医学信号传感与分析

基本信息

  • 批准号:
    RGPIN-2020-04628
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Wired and wireless sensors for biomedical signal acquisition have become ubiquitous for long-term health monitoring and tele-health applications. Biomedical signal analysis which combines the aspects of signal processing and machine learning is becoming an area of importance, both for hospital-based instrumentation and for home-based medical devices. While biomedical instrumentation has improved over the years and is commonly used in health care and research, two main challenges still persist: 1) robust analysis and interpretation of the signals that are acquired, and 2) power requirements of the devices. The current biomedical devices consume large amount of power, and eventually become inefficient and non-compliance especially in long term health monitoring using wearable devices. One of the main reasons for this has been the inefficient use and design of biomedical signal processing algorithms right from signal acquisition to analysis, and decision making. In the proposed research, compressive sensing (CS) technique in which redundancy and sparsity characteristics associated with a biomedical signal are systematically exploited, will be used in designing low-power and robust data acquisition system. A new direction of using CS for analysis and interpretation of the signals will be pursued. The proposed joint compressive sensing and analysis (CSA) framework will look into information theory and optimization methods that are specifically adapted for biomedical signals to handle the variability (due to non-stationarity and non-linearity) of the signals, the inter-relationships and interactions exhibited among physiological systems, and the domain-specific physiological artifacts and interferences. The performance measures of these newly developed CSA techniques will help in improving the power and bandwidth requirements of biomedical sensors used in long term monitoring applications, and will provide robust and efficient extraction of salient features from the signals for improved decision making in healthcare. The applications of the proposed research will tremendously benefit the areas of cardiac signal analysis, neuromuscular signal analysis, respiratory signal analysis, and design of low-power wearables for health and wellness. The techniques and algorithms developed here could also be extended and adapted to other emerging areas such as biometrics/cybersecurity, RADAR/SONAR, and multimedia related signal processing and machine learning.
用于生物医学信号采集的有线和无线传感器在长期健康监测和远程健康应用中已经变得无处不在。结合了信号处理和机器学习的生物医学信号分析正在成为医院仪器和家庭医疗设备的重要领域。虽然生物医学仪器多年来得到了改进,并且通常用于医疗保健和研究,但仍然存在两个主要挑战:1)对采集的信号进行稳健的分析和解释,以及2)设备的功率要求。当前的生物医学设备消耗大量的功率,并且最终变得低效和不符合要求,特别是在使用可穿戴设备的长期健康监测中。其中一个主要原因是从信号采集到分析和决策的生物医学信号处理算法的使用和设计效率低下。在拟议的研究中,压缩传感(CS)技术,其中冗余和稀疏特性与生物医学信号的系统开发,将用于设计低功耗和鲁棒的数据采集系统。 一个新的方向,使用CS分析和解释的信号将被追求。拟议的联合压缩感知和分析(CSA)框架将研究专门适用于生物医学信号的信息理论和优化方法,以处理信号的可变性(由于非平稳性和非线性),生理系统之间的相互关系和相互作用,以及特定领域的生理伪影和干扰。这些新开发的CSA技术的性能指标将有助于提高长期监测应用中使用的生物医学传感器的功率和带宽要求,并将提供强大而有效的信号显著特征提取,以改善医疗保健决策。所提出的研究的应用将极大地有利于心脏信号分析,神经肌肉信号分析,呼吸信号分析以及用于健康和保健的低功耗可穿戴设备的设计等领域。这里开发的技术和算法也可以扩展和适应其他新兴领域,如生物识别/网络安全,雷达/声纳,多媒体相关的信号处理和机器学习。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krishnan, Sridhar其他文献

Advanced signal analysis for the detection of periodic limb movements from bilateral ankle actigraphy
  • DOI:
    10.1111/jsr.12438
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Athavale, Yashodhan;Krishnan, Sridhar;Boulos, Mark I.
  • 通讯作者:
    Boulos, Mark I.
A Joint Time-Frequency and Matrix Decomposition Feature Extraction Methodology for Pathological Voice Classification
Trends in human activity recognition with focus on machine learning and power requirements
  • DOI:
    10.1016/j.mlwa.2021.100072
  • 发表时间:
    2021-09-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen, Binh;Coelho, Yves;Krishnan, Sridhar
  • 通讯作者:
    Krishnan, Sridhar
Effective Dysphonia Detection Using Feature Dimension Reduction and Kernel Density Estimation for Patients with Parkinson's Disease
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
  • 作者:
    Liu, Kaizhi;Wu, Meihong;Chen, Jian;Krishnan, Sridhar;
  • 通讯作者:
Combining Temporal Features by Local Binary Pattern for Acoustic Scene Classification

Krishnan, Sridhar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krishnan, Sridhar', 18)}}的其他基金

Biomedical Signal Sensing and Analysis
生物医学信号传感与分析
  • 批准号:
    RGPIN-2020-04628
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Biomedical Signal Sensing and Analysis
生物医学信号传感与分析
  • 批准号:
    RGPIN-2020-04628
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Robust electronic scoring analysis system for recreational and professional taekwondo sports
适用于休闲和专业跆拳道运动的强大电子评分分析系统
  • 批准号:
    505474-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Robust electronic scoring analysis system for recreational and professional taekwondo sports
适用于休闲和专业跆拳道运动的强大电子评分分析系统
  • 批准号:
    505474-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Robust electronic scoring analysis system for recreational and professional taekwondo sports
适用于休闲和专业跆拳道运动的强大电子评分分析系统
  • 批准号:
    505474-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Biomedical Signal Analysis
生物医学信号分析
  • 批准号:
    1000228251-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Canada Research Chairs
Non-stationary Signal Feature Extraction and Analysis
非平稳信号特征提取与分析
  • 批准号:
    RGPIN-2015-03990
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
  • 批准号:
    81601856
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
  • 批准号:
    2335765
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Mitigating Threats of Physical-Domain Signal Injections on Security, Reliability, and Safety of Sensing and Control Systems
SaTC:核心:小型:减轻物理域信号注入对传感和控制系统的安全性、可靠性和安全性的威胁
  • 批准号:
    2231682
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
Bio-Inspired Molecular Signal-Amplification Sensing
仿生分子信号放大传感
  • 批准号:
    22KJ1283
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a high precision signal processing method for radar sensing and its application to nondestructive inspection
雷达传感高精度信号处理方法的开发及其在无损检测中的应用
  • 批准号:
    23K03883
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetic mechanisms of signal integration in the nutrient sensing network
营养传感网络中信号整合的遗传机制
  • 批准号:
    10710987
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Energy-Efficient Broadband Spectrum Sensing in Real Time Based on a Frequency-Domain Analog Signal Processor
基于频域模拟信号处理器的实时节能宽带频谱感测
  • 批准号:
    2318759
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Array Signal Processing Techniques for Terahertz Communications and Sensing
用于太赫兹通信和传感的阵列信号处理技术
  • 批准号:
    RGPIN-2022-03678
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-functional millimeter-wave radios for joint communication and sensing: signal processing algorithms and practical design
用于联合通信和传感的多功能毫米波无线电:信号处理算法和实用设计
  • 批准号:
    RGPIN-2020-06754
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Biomedical Signal Sensing and Analysis
生物医学信号传感与分析
  • 批准号:
    RGPIN-2020-04628
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Performance Breakthrough in Distributed Fiber Sensing by Digital Signal Processing of Optical Signal Amplitude and Phase
通过光信号幅度和相位的数字信号处理实现分布式光纤传感的性能突破
  • 批准号:
    560813-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了