Nanoprobes to reveal signature biomarkers
纳米探针揭示特征生物标志物
基本信息
- 批准号:RGPIN-2015-04994
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoprobes for functional biomarkers in cell adaptation
Why study cell adaptation? The ability of cells to adapt to different injurious stimuli is one of the major forces driving evolution. The mechanisms underlying cell adaptation are not fully understood. Lysosomes, dynamic cellular organelles which were considered for a long time only “garbage incinerators” have been recently proposed as essential players in cellular adaptation. Lysosomal functions are regulated at transcriptional and posttranscriptional levels and these functions respond to extracellular and intracellular cues. Transcription factor EB (TFEB) is a master regulator of lysosomal functions. Its status depends on upstream kinase activities.
Our working hypothesis is that cell adaptation to traumatic (mechanical) and chemical injury occurs through lysosomal adaptation. Our long-term studies will focus on the mechanisms implicated in lysosomal adaptation and the development of new (simple and sensitive) nanotools which will be widely applicable beyond processes in cell adaptation to insults.
Our short-term objectives are: 1. To develop nanostructure-based functional assays for enzymes, such as cytoplasmic kinases Erk2 (extracellular regulated kinase) and GSK3 beta (glycogen synthase kinase), which are regulators of TFEB, and for lysosomal proteases (cathepsins). 2. To generate nanoprobes recognizing selected plasma membrane biomarkers and to measure their expression with superior sensitivity compared to currently available tools. 3. To generate “NanoScript” (artificial, nanoparticle-based transcription factor), which is designed to mimic the structure and function of TFEB. We will exploit unique physical and chemical properties of semiconductor nanocrystals (quantum dots, QDs) and gold nanoparticles (AuNP). The relative simplicity of the measurement, the inexpensive instrumentation, robustness and potential for high-throughput assaying, makes the proposed assays attractive.
Anticipated outcomes and benefits. Our examples of nanotools for selected proteins and functional enzymatic assays will be widely applicable for functional assessments of enzymes beyond cell injury and adaptation. For instance, fostering active life style, especially with children, brings about numerous injuries. Understanding the mechanisms of cell adaptation in different tissues will in the long run provide the means of promoting “cell fitness”. The fitter the cell the better adaptability and functional integrity will be achieved thereby preventing long-term chronic disabilities and considerably reducing the economic burden. The studies will allow trainees at undergraduate, graduate and post-doctoral level to gain experience in multidisciplinary research bridging chemistry, physics and biology.
用于细胞适应功能生物标志物的纳米探针
为什么要研究细胞适应?细胞适应不同有害刺激的能力是推动进化的主要力量之一。细胞适应的机制尚不完全清楚。溶酶体是一种动态细胞器,长期以来被认为只是“垃圾焚烧炉”,最近被认为是细胞适应的重要参与者。溶酶体功能在转录和转录后水平上受到调节,这些功能对细胞外和细胞内的信号做出反应。转录因子 EB (TFEB) 是溶酶体功能的主要调节因子。其状态取决于上游激酶活性。
我们的工作假设是细胞对创伤(机械)和化学损伤的适应是通过溶酶体适应发生的。我们的长期研究将集中于溶酶体适应所涉及的机制以及新的(简单且敏感的)纳米工具的开发,这些工具将广泛应用于细胞适应损伤的过程之外。
我们的短期目标是: 1. 开发基于纳米结构的酶功能测定,例如细胞质激酶 Erk2(细胞外调节激酶)和 GSK3 beta(糖原合酶激酶)(它们是 TFEB 的调节剂)和溶酶体蛋白酶(组织蛋白酶)。 2. 生成识别选定质膜生物标志物的纳米探针,并以比现有工具更高的灵敏度测量其表达。 3. 生成“NanoScript”(基于纳米颗粒的人工转录因子),旨在模仿 TFEB 的结构和功能。 我们将利用半导体纳米晶体(量子点,QD)和金纳米颗粒(AuNP)的独特物理和化学特性。测量的相对简单性、廉价的仪器、稳健性和高通量测定的潜力,使得所提出的测定具有吸引力。
预期成果和效益。我们用于选定蛋白质和功能酶测定的纳米工具示例将广泛适用于细胞损伤和适应之外的酶功能评估。例如,培养积极的生活方式,尤其是对儿童来说,会带来许多伤害。从长远来看,了解不同组织中细胞适应的机制将为促进“细胞健康”提供手段。细胞越健康,适应性和功能完整性就越好,从而防止长期慢性残疾并大大减轻经济负担。这些研究将使本科生、研究生和博士后级别的学员获得化学、物理和生物学之间的多学科研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maysinger, Dusica其他文献
Real-time imaging of astrocyte response to quantum dots:: In vivo screening model system for biocompatibility of nanoparticles
- DOI:
10.1021/nl071611t - 发表时间:
2007-08-01 - 期刊:
- 影响因子:10.8
- 作者:
Maysinger, Dusica;Behrendt, Maik;Kriz, Jasna - 通讯作者:
Kriz, Jasna
Short Ligands Affect Modes of QD Uptake and Elimination in Human Cells
- DOI:
10.1021/nn201009w - 发表时间:
2011-06-01 - 期刊:
- 影响因子:17.1
- 作者:
Al-Hajaj, Noura A.;Moquin, Alexandre;Maysinger, Dusica - 通讯作者:
Maysinger, Dusica
Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange.
- DOI:
10.1038/nmeth.3261 - 发表时间:
2015-03 - 期刊:
- 影响因子:48
- 作者:
Ding, Yidan;Li, Jiao;Enterina, Jhon Ralph;Shen, Yi;Zhang, Issan;Tewson, Paul H.;Mo, Gary C. H.;Zhang, Jin;Quinn, Anne Marie;Hughes, Thomas E.;Maysinger, Dusica;Alford, Spencer C.;Zhang, Yan;Campbell, Robert E. - 通讯作者:
Campbell, Robert E.
Ratiometric pH Sensing in Living Cells Using Carbon Dots
- DOI:
10.1002/ppsc.201900430 - 发表时间:
2019-12-11 - 期刊:
- 影响因子:2.7
- 作者:
Macairan, Jun-Ray;Zhang, Issan;Maysinger, Dusica - 通讯作者:
Maysinger, Dusica
Mechanisms of cellular adaptation to quantum dots - the role of glutathione and transcription factor EB
- DOI:
10.3109/17435390.2011.572195 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:5
- 作者:
Neibert, Kevin D.;Maysinger, Dusica - 通讯作者:
Maysinger, Dusica
Maysinger, Dusica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maysinger, Dusica', 18)}}的其他基金
Nanozymes: modulators of neural cells
纳米酶:神经细胞的调节剂
- 批准号:
RGPIN-2020-07011 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Nanozymes: modulators of neural cells
纳米酶:神经细胞的调节剂
- 批准号:
RGPIN-2020-07011 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Nanozymes: modulators of neural cells
纳米酶:神经细胞的调节剂
- 批准号:
RGPIN-2020-07011 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Nanoprobes to reveal signature biomarkers
纳米探针揭示特征生物标志物
- 批准号:
RGPIN-2015-04994 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Nanoprobes to reveal signature biomarkers
纳米探针揭示特征生物标志物
- 批准号:
RGPIN-2015-04994 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Nanoprobes to reveal signature biomarkers
纳米探针揭示特征生物标志物
- 批准号:
RGPIN-2015-04994 - 财政年份:2017
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Nanoprobes to reveal signature biomarkers
纳米探针揭示特征生物标志物
- 批准号:
RGPIN-2015-04994 - 财政年份:2015
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Functionalized nanoparticles for real time imaging of cerebral lesions
用于脑损伤实时成像的功能化纳米颗粒
- 批准号:
350345-2007 - 财政年份:2010
- 资助金额:
$ 3.28万 - 项目类别:
Strategic Projects - Group
Functionalized nanoparticles for real time imaging of cerebral lesions
用于脑损伤实时成像的功能化纳米颗粒
- 批准号:
350345-2007 - 财政年份:2008
- 资助金额:
$ 3.28万 - 项目类别:
Strategic Projects - Group
Functionalized nanoparticles for real time imaging of cerebral lesions
用于脑损伤实时成像的功能化纳米粒子
- 批准号:
350345-2007 - 财政年份:2007
- 资助金额:
$ 3.28万 - 项目类别:
Strategic Projects - Group
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
Single-Nuclei Sequencing Whole Aquatic Plants to Reveal Novel Nutrient Transport Mechanisms
对整个水生植物进行单核测序,揭示新的养分运输机制
- 批准号:
BB/Z514809/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Fellowship
Using AI to reveal the true extent & context of alcohol exposure in videos
利用人工智能揭示真实范围
- 批准号:
DP230100927 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Projects
Study of nuclear receptors and repeat sequences to reveal the basis of prenatal neurological effects of environmental chemicals
研究核受体和重复序列以揭示环境化学物质对产前神经系统影响的基础
- 批准号:
23H00521 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
- 批准号:
23H01360 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mining the chemodiversity of the genus Myrica to reveal bioactive molecules for their medicinal uses
挖掘杨梅属的化学多样性,揭示其药用生物活性分子
- 批准号:
2880591 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Studentship