Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
基本信息
- 批准号:RGPIN-2015-05221
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electronic equipment accounts for a significant fraction of our rapidly increasing global demand for energy and it is projected to consume 30% of our energy budget in 10 years. Improving the energy efficiency in electronic devices such as the transistor at the computing core of data centers, or the light-emitting diode that will become pervasive in lighting applications, can have a remarkable influence on a country’s future economy and environmental impact.
Heat transport has profound effects on the energy efficiency, performance and reliability of electronic devices. Particularly at the nanoscale, heat flow is greatly affected by low-dimensionality, device geometry and the presence of interfaces across materials with dissimilar phonon spectra. As device size is reduced or more functionality is added, the quality and number of interfaces that pose as barriers to heat flow have greater impact, and understanding their role can lead to ways to engineer energy-efficient devices. On a fundamental level, knowledge of how heat flow affects electronic transport phenomena can drive the discovery of new functionality. The proposed research aims to answer the following questions: how is heat transported in novel materials that may be used in future electronic devices? How can interfaces be tailored to improve cooling efficiency? How can one probe heat transport at the nanoscale? Answering these questions can in the long term shape the functionality and energy use of the evolving electronics landscape.
Versatile optical pump-probe techniques have emerged to investigate heat transport in materials, interfaces and composites. In the short term we will adopt and extend these techniques to make them sensitive to heat transport over a large range of heat transport length scales, in order to span the diffusive to the quasi-ballistic limits. Additionally, electrical thermometry will allow us to probe devices locally. These tools will be applied to the study of heat flow in: (i) emerging 2-dimensional electronic materials, (ii) nanoscale composites with high thermal anisotropy, (iii) magnetic junctions used in magnetic field sensors and magnetic random access memories.
The impact of this work will benefit Canada’s economy in the short term through the training of highly qualified personnel and raising the profile of the country’s university research work. Furthermore, research on thermal anisotropy in composites has immediate applications in the data storage industry, and can contribute directly to progress in hard disk drive products. In the long run this research program will improve the performance, energy efficiency and environmental impact of the world’s rapidly growing electronic, computing and telecommunications infrastructure.
电子设备在我们快速增长的全球能源需求中占很大一部分,预计在10年内将消耗我们能源预算的30%。提高电子设备的能源效率,如数据中心计算核心的晶体管,或将在照明应用中普及的发光二极管,可以对一个国家未来的经济和环境影响产生显著影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pisana, Simone其他文献
Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
- DOI:
10.1038/nmat1846 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:41.2
- 作者:
Pisana, Simone;Lazzeri, Michele;Mauri, Francesco - 通讯作者:
Mauri, Francesco
Enhanced B2 Ordering of FeRh Thin Films Using B2 NiAl Underlayers
- DOI:
10.1109/tmag.2011.2157963 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:2.1
- 作者:
Kande, Dhishan;Pisana, Simone;Zhu, Jian-Gang - 通讯作者:
Zhu, Jian-Gang
Importance of quadratic dispersion in acoustic flexural phonons for thermal transport of two-dimensional materials
- DOI:
10.1103/physrevb.103.235426 - 发表时间:
2021-06-22 - 期刊:
- 影响因子:3.7
- 作者:
Taheri, Armin;Pisana, Simone;Singh, Chandra Veer - 通讯作者:
Singh, Chandra Veer
Enhanced subthreshold slopes in large diameter single wall carbon nanotube field effect transistors
- DOI:
10.1109/tnano.2008.917849 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:2.4
- 作者:
Pisana, Simone;Zhang, Can;Robertson, John - 通讯作者:
Robertson, John
Improved Magneto-Optic Surface Plasmon Resonance Biosensors
- DOI:
10.3390/photonics5030015 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:2.4
- 作者:
Rizal, Conrad;Pisana, Simone;Hrvoic, Ivan - 通讯作者:
Hrvoic, Ivan
Pisana, Simone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pisana, Simone', 18)}}的其他基金
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Electromagnetic hazardous spill retention system
电磁危险泄漏保留系统
- 批准号:
543542-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Design and optimization of heat dissipation and illumination patterns in novel recessed chip-on-board designs for high-power LED lighting applications
针对高功率 LED 照明应用的新型嵌入式芯片级设计中的散热和照明模式的设计和优化
- 批准号:
521640-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
- 批准号:
RGPIN-2015-05221 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Nanopore Array for Multiparameter Analysis of Single Extracellular Vesicles
用于单个细胞外囊泡多参数分析的纳米孔阵列
- 批准号:
10760154 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
- 批准号:
23K13818 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10522560 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10703469 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
- 批准号:
RGPIN-2020-06137 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Dual Role of HSP70 in Diabetes-Induced Vascular Dysfunction
HSP70 在糖尿病引起的血管功能障碍中的双重作用
- 批准号:
10515009 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Nanoscale characterisation of charge and heat transport across interfaces in novel, molecular thermoelectric materials
新型分子热电材料中跨界面电荷和热传输的纳米级表征
- 批准号:
2606579 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Ultimate Suppression of Nanoscale Heat Transport with Quasi-phononic Crystal
准声子晶体对纳米级热传输的终极抑制
- 批准号:
21K14089 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using ferroelectric domain walls for active control of heat flow at the nanoscale
使用铁电畴壁主动控制纳米级热流
- 批准号:
MR/T043172/1 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship