Statistical Methods for the Analysis of Recurrent Events and Event History Data

分析重复事件和事件历史数据的统计方法

基本信息

  • 批准号:
    RGPIN-2015-06152
  • 负责人:
  • 金额:
    $ 0.95万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Statistical methods based on the occurrence of a single event are not adequate for a comprehensive understanding of data producing mechanisms of event processes with complex event histories. Therefore, statistical methods and models designed for the analysis of recurrent events and other complex event histories are needed in many fields of study. Models that ignore the past of an event process are incapable of comprehensive understanding of the underlying process. Dynamic models are intensity-based stochastic process models which are used to examine the effect of past event occurrences on the present or future evolution of a process. Dynamic models include dynamic covariates, which are essentially internal time-dependent explanatory variables. The inherent nature of dynamic covariates and their complex relations with interventions, treatment effects and heterogeneity make modelling and inference challenging issues when dynamic covariates are present. Another important issue is the use of the outcome-dependent study designs in event history settings. Such designs provide a cost-effective way to analyze event history data. However, there are many methodological problems in event history settings. The overarching goal of this research program is to address important issues in the statistical analysis of recurrent events and event history data, motivated by the need for complex models and related methods of analysis in engineering and scientific settings. Therefore, I will explore dynamic models and outcome-dependent study designs for recurrent events and event history, and develop novel statistical methods in various settings. Emerging methodological and challenging issues that arise in epidemiology, medicine and reliability engineering motivate this research program. Research carried out through this program will have direct impact on important application areas in Canada. For example, the developed novel models will be instrumental in understanding the recurrent event occurrences in health services in Canada, providing concrete evidence to decision-makers in health policy to improve care activities and hospital utilization, and to reduce the total hospitalization cost. The anticipated outcomes of the research will also be beneficial for power generation companies in Canada to improve their reliability programs and to determine their maintenance policies, which minimize the total cost of operation and maximize the availability of repairable systems.
基于单个事件发生的统计方法不足以全面理解具有复杂事件历史的事件过程的数据产生机制。因此,许多研究领域都需要设计用于分析重复事件和其他复杂事件历史的统计方法和模型。忽略事件过程过去的模型无法全面理解底层过程。动态模型是基于强度的随机过程模型,用于检查过去事件发生对过程当前或未来演变的影响。动态模型包括动态协变量,它们本质上是内部与时间相关的解释变量。动态协变量的固有性质及其与干预、治疗效果和异质性的复杂关系使得当存在动态协变量时建模和推理具有挑战性。另一个重要问题是在事件历史背景中使用结果依赖的研究设计。此类设计提供了一种经济有效的方法来分析事件历史数据。然而,事件历史设置存在许多方法论问题。该研究计划的总体目标是解决重复事件和事件历史数据统计分析中的重要问题,其动机是工程和科学环境中对复杂模型和相关分析方法的需求。因此,我将探索重复事件和事件历史的动态模型和结果依赖的研究设计,并在各种环境下开发新的统计方法。流行病学、医学和可靠性工程中出现的新方法论和挑战性问题推动了这一研究项目。通过该计划进行的研究将对加拿大的重要应用领域产生直接影响。例如,开发的新模型将有助于了解加拿大卫生服务中经常发生的事件,为卫生政策决策者提供具体证据,以改善护理活动和医院利用率,并降低总住院费用。研究的预期结果也将有利于加拿大发电公司改进其可靠性计划并确定其维护政策,从而最大限度地降低总运营成本并最大限度地提高可修复系统的可用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cigsar, Candemir其他文献

Comparing the cohort design and the nested case-control design in the presence of both time-invariant and time-dependent treatment and competing risks: bias and precision.
  • DOI:
    10.1002/pds.3299
  • 发表时间:
    2012-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Austin, Peter C.;Anderson, Geoffrey M.;Cigsar, Candemir;Gruneir, Andrea
  • 通讯作者:
    Gruneir, Andrea
Breast cancer detection among young survivors of pediatric Hodgkin lymphoma with screening magnetic resonance imaging.
  • DOI:
    10.1002/cncr.28747
  • 发表时间:
    2014-08-15
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Minh Thi Tieu;Cigsar, Candemir;Ahmed, Sameera;Ng, Andrea;Diller, Lisa;Millar, B. -A.;Crystal, Pavel;Hodgson, David C.
  • 通讯作者:
    Hodgson, David C.
Repeat emergency department visits by nursing home residents: a cohort study using health administrative data
  • DOI:
    10.1186/s12877-018-0854-8
  • 发表时间:
    2018-07-05
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Gruneir, Andrea;Cigsar, Candemir;Rochon, Paula A.
  • 通讯作者:
    Rochon, Paula A.

Cigsar, Candemir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cigsar, Candemir', 18)}}的其他基金

Statistical Methods for the Analysis of Recurrent Events and Event History Data
分析重复事件和事件历史数据的统计方法
  • 批准号:
    RGPIN-2015-06152
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for the Analysis of Recurrent Events and Event History Data
分析重复事件和事件历史数据的统计方法
  • 批准号:
    RGPIN-2015-06152
  • 财政年份:
    2020
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for the Analysis of Recurrent Events and Event History Data
分析重复事件和事件历史数据的统计方法
  • 批准号:
    RGPIN-2015-06152
  • 财政年份:
    2019
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for the Analysis of Recurrent Events and Event History Data
分析重复事件和事件历史数据的统计方法
  • 批准号:
    RGPIN-2015-06152
  • 财政年份:
    2018
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for the Analysis of Recurrent Events and Event History Data
分析重复事件和事件历史数据的统计方法
  • 批准号:
    RGPIN-2015-06152
  • 财政年份:
    2017
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods for the Analysis of Recurrent Events and Event History Data
分析重复事件和事件历史数据的统计方法
  • 批准号:
    RGPIN-2015-06152
  • 财政年份:
    2015
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
  • 批准号:
    10594266
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
  • 批准号:
    10740240
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Statistical methods for analysis of high-dimensional mediation pathways
高维中介路径分析的统计方法
  • 批准号:
    10582932
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
Statistical Methods for Human Glycome Data Analysis
人类糖组数据分析的统计方法
  • 批准号:
    23K11021
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
  • 批准号:
    23KJ0649
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
DMS/NIGMS 1: Statistical Methods for Design and Analysis of Clinical-scale Single Cell Studies
DMS/NIGMS 1:临床规模单细胞研究设计和分析的统计方法
  • 批准号:
    2245575
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Standard Grant
Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
  • 批准号:
    2232547
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Standard Grant
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
  • 批准号:
    RGPIN-2018-04462
  • 财政年份:
    2022
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了