Bifurcation theory, computation and applications
分岔理论、计算与应用
基本信息
- 批准号:RGPIN-2015-06210
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems arising in science and engineering can be modelled by mathematical systems that dynamically evolve in time. Among them, nonlinear differential equations are widely used to describe complex phenomena, such as vibration of machinery, weather patter, animal locomotion, population growth, financial markets, spread of diseases, recurrent infection, etc. Such dynamical processes often exhibit qualitative changes, called bifurcations, like earthquakes, population explosions, stock market crashes, disease outbreaks and so on. Bifurcation theory is a powerful tool to study bifurcation phenomena and explain how small changes in the system parameters can lead to these qualitative changes. The methods of bifurcation theory enable us to identify the parameter values where bifurcations occur, and to predict the changes in behaviour of the system near the bifurcation points. To facilitate the application of bifurcation theory in solving real-world complex problems, which are usually high dimensional and nonlinear, the developments of efficient algorithms and computer programs to reduce system complexity are required. Center manifold theory and normal form theory will be used to greatly simplify system equations by extracting the "key" information (or terms) to form a simple system, while keeping the qualitative behaivour of the system unchanged near bifurcation points. This proposed research program has three objectives. One of them is to develop the theory and efficient computational methods for the parametric normal forms of general delay differential equations, which can be easily used to find, for example, periodic solutions (limit cycles) of a complex system and determine their stability. The other two objectives are focused on applications. We intend to apply the methods of dynamical systems and bifurcation theory with the efficient computational tools to analyze models of specific biological processes: HIV-1 therapy, and recurrent infection. In particular, we shall further study our early developed HIV-1 therapy model to find new mechanisms which can be used to identify other types of viral blips. We also want to apply the bifurcation theory and normal forms for delay differential systems to investigate the blips phenomenon in HIV-1 models with delays. These applications are not only significant for increasing scientific understanding, but progress may yield practical, clinical benefits. In addition, the theory and methodology we develop for these specific applications will be useful for many applications from other disciplines, as mentioned above.
科学和工程中出现的许多问题都可以用随时间动态发展的数学系统来建模。其中,非线性微分方程被广泛用于描述复杂现象,如机械振动、天气模式、动物运动、人口增长、金融市场、疾病传播、反复感染等。这种动态过程经常表现出质变,称为分岔,如地震、人口爆炸、股市崩盘、疾病爆发等。分岔理论是研究分岔现象和解释系统参数的微小变化如何导致这些质变的有力工具。分岔理论的方法使我们能够识别发生分岔的参数值,并预测系统在分岔点附近的行为变化。为了促进分岔理论在解决现实世界复杂问题中的应用,通常是高维和非线性的,需要开发有效的算法和计算机程序来降低系统的复杂性。中心流形理论和范式理论将通过提取“关键”信息(或项)来极大地简化系统方程,形成一个简单的系统,同时保持系统在分岔点附近的定性行为不变。这个拟议的研究计划有三个目标。其中之一是发展一般时滞微分方程参数范式的理论和有效的计算方法,可以很容易地用于寻找,例如,复杂系统的周期解(极限环)和确定其稳定性。另外两个目标侧重于应用程序。我们打算应用动力系统和分岔理论的方法与有效的计算工具来分析特定的生物过程模型:HIV-1治疗和复发感染。特别是,我们将进一步研究我们早期开发的HIV-1治疗模型,以发现可用于识别其他类型病毒突变的新机制。我们也想运用分岔理论和时滞微分系统的范式来研究带有时滞的HIV-1模型中的光点现象。这些应用不仅对提高科学认识意义重大,而且进展可能产生实际的临床效益。此外,如上所述,我们为这些特定应用开发的理论和方法将对来自其他学科的许多应用有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu, Pei其他文献
Mortality risks associated with floods in 761 communities worldwide: time series study.
- DOI:
10.1136/bmj-2023-075081 - 发表时间:
2023-10-04 - 期刊:
- 影响因子:105.7
- 作者:
Yang, Zhengyu;Huang, Wenzhong;Mckenzie, Joanne E.;Xu, Rongbin;Yu, Pei;Ye, Tingting;Wen, Bo;Gasparrini, Antonio;Armstrong, Ben;Tong, Shilu;Lavigne, Eric;Madureira, Joana;Kysely, Jan;Guo, Yuming;Li, Shanshan;MCC Collaborative Res Network - 通讯作者:
MCC Collaborative Res Network
Research on Movement of Fluid Stratification Interface in Density Lock
密度锁中流体层界面运动研究
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yan, Chang-Qi;Gu, Hai-Feng;Yu, Pei - 通讯作者:
Yu, Pei
Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function.
- DOI:
10.4103/1673-5374.336875 - 发表时间:
2022-10 - 期刊:
- 影响因子:6.1
- 作者:
Wu, Min-Yi;Zou, Wen-Jun;Yu, Pei;Yang, Yuhua;Li, Shao-Jian;Liu, Qiang;Xie, Jiatian;Chen, Si-Qi;Lin, Wei-Jye;Tang, Yamei - 通讯作者:
Tang, Yamei
Does the emissions trading system in developing countries accelerate carbon leakage through OFDI? Evidence from China
- DOI:
10.1016/j.eneco.2021.105397 - 发表时间:
2021-06-22 - 期刊:
- 影响因子:12.8
- 作者:
Yu, Pei;Cai, Zhengfang;Sun, Yongping - 通讯作者:
Sun, Yongping
Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate
具有广义非单调和饱和发病率的 SIRS 流行病模型的分岔分析
- DOI:
10.1016/j.jde.2019.03.005 - 发表时间:
2019-07-15 - 期刊:
- 影响因子:2.4
- 作者:
Lu, Min;Huang, Jicai;Yu, Pei - 通讯作者:
Yu, Pei
Yu, Pei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu, Pei', 18)}}的其他基金
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory, computation and applications
分岔理论、计算与应用
- 批准号:
RGPIN-2015-06210 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory, computation and applications
分岔理论、计算与应用
- 批准号:
RGPIN-2015-06210 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory, computation and applications
分岔理论、计算与应用
- 批准号:
RGPIN-2015-06210 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory, computation and applications
分岔理论、计算与应用
- 批准号:
RGPIN-2015-06210 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computation of center manifold and normal form and application
中心流形和范式的计算及应用
- 批准号:
183636-2010 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computation of center manifold and normal form and application
中心流形和范式的计算及应用
- 批准号:
183636-2010 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Computation of center manifold and normal form and application
中心流形和范式的计算及应用
- 批准号:
183636-2010 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
- 批准号:
2412923 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
- 批准号:
2231863 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Multidimensional and Compressive Super-Resolution: Theory, Computation, and Fundamental Limits
多维和压缩超分辨率:理论、计算和基本限制
- 批准号:
2309602 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
REU Site: Integration of Chemical Theory, Computation and Experiment at Duquesne University
REU 网站:杜肯大学化学理论、计算和实验的整合
- 批准号:
2244151 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Planning: PREC: The UC Merced/MolSSI Chemical Computation and Theory Pathway Program
规划:PREC:加州大学默塞德分校/MolSSI 化学计算和理论衔接课程
- 批准号:
2335166 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Conference: ASE60: Synergistic Interactions between Theory and Computation
会议:ASE60:理论与计算之间的协同相互作用
- 批准号:
2324599 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
- 批准号:
10746671 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Verified exact computation over continuous higher types
验证了连续较高类型的精确计算
- 批准号:
22KF0198 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
- 批准号:
10879209 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
- 批准号:
2307466 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant