Multidimensional and Compressive Super-Resolution: Theory, Computation, and Fundamental Limits

多维和压缩超分辨率:理论、计算和基本限制

基本信息

  • 批准号:
    2309602
  • 负责人:
  • 金额:
    $ 17.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Novel imaging methods that produce high resolution images are indispensable tools that have enabled important scientific discoveries and technological advancements. Imaging devices have fundamental resolution limits, and super-resolution techniques are computational methods that are used to bypass such limits by leveraging prior information about an imaged object. For many applications including remote sensing, super-resolution fluorescence microscopy and quantum information theory, the imaged objects can be modeled as a collection of point sources and the collected information is a superposition of sinusoidal waves. This project develops novel super-resolution algorithms that will be used for imaging and signal processing and provides their performance guarantees. The City College of New York is one of the most diverse universities in the United States, and this project will support students through research opportunities.Existing super-resolution theory and computational methods primarily pertain to the one-dimensional uniform sampling case. On the other hand many applications are inherently multidimensional and collecting samples may be expensive while new imaging technology allows for the acquisition of specialized information. This project focuses on three themes with the goal of bridging theory and practice. (1) It introduces novel and efficient multidimensional super-resolution algorithms and analyzes their stability and resolution limits. (2) It formulates novel compressive super-resolution algorithms that require fewer samples and rigorously derives their sampling complexities and stability. (3) Use of fluorescence molecules has revolutionized imaging of biological samples and this project formulates a novel model with an accompanying expected min-max error, studying candidate algorithms in search of an optimal one. The theoretical performance guarantees that accompany these methods will provide valuable guidelines for practitioners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
产生高分辨率图像的新型成像方法是实现重要科学发现和技术进步不可或缺的工具。成像设备具有基本的分辨率限制,而超分辨率技术是通过利用有关成像对象的先验信息来绕过这些限制的计算方法。在遥感、超分辨率荧光显微镜和量子信息论等许多应用中,可以将成像物体建模为点源的集合,所收集的信息是正弦波的叠加。该项目开发新的超分辨率算法,将用于成像和信号处理,并提供其性能保证。纽约城市学院是美国最多元化的大学之一,该项目将通过研究机会支持学生。现有的超分辨理论和计算方法主要针对一维均匀采样情况。另一方面,许多应用程序本质上是多维的,收集样本可能很昂贵,而新的成像技术允许获取专门的信息。本项目围绕三个主题展开,旨在将理论与实践相结合。(1)引入新颖高效的多维超分辨算法,分析其稳定性和分辨极限。(2)提出了需要较少样本的新型压缩超分辨率算法,并严格推导了其采样复杂度和稳定性。(3)荧光分子的使用彻底改变了生物样品的成像,本项目制定了一个具有预期最小-最大误差的新模型,研究候选算法以寻找最优算法。伴随这些方法的理论性能保证将为实践者提供有价值的指导。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weilin Li其他文献

Which Combination of High Quality Infant-Toddler and Preschool Care Best Promotes School Readiness?.
高质量婴幼儿和学前教育的哪种组合最能促进入学准备?
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weilin Li;G. Farkas;G. Duncan;M. Burchinal;D. Vandell;Erik A. Ruzek;Tran T. Dang
  • 通讯作者:
    Tran T. Dang
Effect of drought stress on physiological changes and leaf surface morphology in the blackberry
干旱胁迫对黑莓生理变化及叶面形态的影响
  • DOI:
    10.1007/s40415-017-0377-0
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Chunhong Zhang;Haiyan Yang;Wenlong Wu;Weilin Li
  • 通讯作者:
    Weilin Li
Linear Active Disturbance Rejection Control of Virtual DC Machine for Pulsed-power Load Compensation
用于脉冲功率负载补偿的虚拟直流电机线性有源抗扰控制
CeCl3·7H2O as mild and efficient catalyst for the one-pot multicomponent synthesis of 8-aryl-7,8-dihydro[1,3]dioxolo[4,5-g]chromen-6-ones
CeCl3·7H2O作为温和高效的催化剂用于一锅法多组分合成8-芳基-7,8-二氢[1,3]二氧杂环[4,5-g]色烯-6-酮
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liqiang Wu;Weilin Li;Fu‐Lin Yan
  • 通讯作者:
    Fu‐Lin Yan
Sa2009 – Combinatorial Blockade of De Novo Cholesterol Biosynthesis and Pcsk9 As a Synergistic Therapy Fro <em>Kras</em>Mutant Colorectal Cancer
  • DOI:
    10.1016/s0016-5085(19)38032-1
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chi Chun Wong;Jiaying Xu;Weilin Li;Wei Kang;Ka Fai To;Joseph J. Sung;Jun Yu
  • 通讯作者:
    Jun Yu

Weilin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Compressive sensing理论的单探测器太赫兹成像技术
  • 批准号:
    60977009
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
  • 批准号:
    60776795
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

EAGER: IMPRESS-U: Exploratory Research on Generative Compression for Compressive Lidar
EAGER:IMPRESS-U:压缩激光雷达生成压缩的探索性研究
  • 批准号:
    2404740
  • 财政年份:
    2024
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Standard Grant
INVESTIGATING IN VIVO COMPRESSIVE FORCES: CELL DIVISION, NUCLEAR INTEGRITY, CANCER INITIATION
研究体内压力:细胞分裂、核完整性、癌症发生
  • 批准号:
    MR/W024519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Research Grant
Fracture limit of steels under a compressive stress state nearby uniaxial compression
近单轴压缩压应力状态下钢材的断裂极限
  • 批准号:
    23K04435
  • 财政年份:
    2023
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
  • 批准号:
    EP/X022951/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Fellowship
Ensuring Data Privacy in Deep Learning through Compressive Learning
通过压缩学习确保深度学习中的数据隐私
  • 批准号:
    EP/X03447X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Research Grant
CAREER: Theoretical Framework for Design and Analysis of Snapshot Compressive Imaging Systems
职业:快照压缩成像系统设计和分析的理论框架
  • 批准号:
    2237538
  • 财政年份:
    2023
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Continuing Grant
Deep compressive quantitative MRI imaging
深度压缩定量 MRI 成像
  • 批准号:
    EP/X001091/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Research Grant
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
  • 批准号:
    2889834
  • 财政年份:
    2023
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Studentship
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211696
  • 财政年份:
    2022
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks
FRG:协作研究:压缩网络上可压缩数据的数学和统计分析
  • 批准号:
    2152289
  • 财政年份:
    2022
  • 资助金额:
    $ 17.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了