Efficient Options for Characterizing and Deriving Groups of Interactive Agents

用于表征和导出交互式代理组的有效选项

基本信息

  • 批准号:
    RGPIN-2015-06230
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

We live in a world of societies, from anthills to wolf packs to human families and tribes. Societies vary widely in how their members think, act, and interact with each other (how different is an ant from a wolf? A wolf from a human being?). Societies also have their own capabilities -- they can thrive in the face of environmental changes and the loss of even moderate numbers of members (think how rapidly an anthill is rebuilt when it is kicked over) and perform complex tasks beyond the capabilities of any individual member (like building cities and going to the moon). Now that we can create artificial agents using computers, we want these agents to form their own societies with all the advantages of natural ones -- imagine swarms of small cheap robots collaborating to quickly build housing after natural disasters, or non-player characters (NPC) in computer games that can interact naturally with both each other and human players in intricate unscripted stories that never repeat and never end. However, it is remarkably difficult to characterize how such artificial multi-agent systems (MAS) act (Will a given robot swarm always construct housing that is safe to live in? Can a human player find out how to kill the Black Wizard by talking and trading with a given set of NPC?), let alone design MAS to reliably perform specified tasks. This is not surprising given well-known difficulties in understanding and manipulating natural MAS (Will an ocean ecosystem collapse if a particular species goes extinct? What measures can a government implement to stave off a recession?). In my proposed research, I will use parameterized complexity analysis to find new practical methods for characterizing and designing MAS. Existing methods using heuristics like simulation and evolutionary algorithms operate quickly but are not guaranteed to be correct (in that they may fail to find valid solutions or claim that a produced solution is the best when better ones exist). However, given restrictions on the agents and their interactions in a typical MAS, there may yet be methods that are both correct and fast under those restrictions. My analysis will work outwards from the very simplest MAS, gradually adding more complex agent abilities and interactions, to chart the frontier between the types of MAS that can and cannot be dealt with efficiently. My research should lead to greatly improved methods for creating, understanding, and manipulating both artificial and natural MAS.
我们生活在一个社会的世界,从蚁丘到狼群,再到人类家庭和部落。社会在成员的思考、行动和相互作用方面有很大的不同(蚂蚁和狼有多大的不同?一只狼从人类?)。社会也有自己的能力--即使面对环境变化和适度数量的成员流失,它们也能蓬勃发展(想想一个蚁丘被踢翻后重建的速度有多快),并执行超出任何个体成员能力的复杂任务(如建造城市和登月)。 现在我们可以使用计算机创建人工智能体,我们希望这些智能体形成自己的社会,具有自然社会的所有优势-想象一下成群的小型廉价机器人在自然灾害后合作迅速建造房屋,或者计算机游戏中的非玩家角色(NPC)可以在复杂的无脚本故事中自然地相互互动,永远不会重复,永远不会结束。然而,要描述这种人工多智能体系统(MAS)的行为是非常困难的(一个给定的机器人群总是能建造安全的住房吗?人类玩家可以通过与一组给定的NPC交谈和交易来找到杀死黑巫师的方法吗?),更不用说设计MAS来可靠地执行特定任务了。这并不奇怪,因为在理解和操纵自然MAS方面存在着众所周知的困难(如果一个特定的物种灭绝,海洋生态系统会崩溃吗?政府可以采取什么措施来避免经济衰退?) 在我提出的研究中,我将使用参数化的复杂性分析,找到新的实用方法来表征和设计MAS。现有的方法使用类似模拟和进化算法的算法,但不能保证是正确的(因为它们可能无法找到有效的解决方案,或者当存在更好的解决方案时,声称产生的解决方案是最好的)。然而,在一个典型的MAS中,给定对代理及其交互的限制,可能仍然存在在这些限制下既正确又快速的方法。我的分析将从最简单的MAS向外工作,逐渐添加更复杂的代理能力和交互,以绘制能够有效处理和不能有效处理的MAS类型之间的边界。我的研究应该导致大大改善的方法来创建,理解和操纵人工和自然MAS。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wareham, Harold其他文献

Wareham, Harold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wareham, Harold', 18)}}的其他基金

Efficient Options for Characterizing and Deriving Groups of Interactive Agents
用于表征和导出交互式代理组的有效选项
  • 批准号:
    RGPIN-2015-06230
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Options for Characterizing and Deriving Groups of Interactive Agents
用于表征和导出交互式代理组的有效选项
  • 批准号:
    RGPIN-2015-06230
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Options for Characterizing and Deriving Groups of Interactive Agents
用于表征和导出交互式代理组的有效选项
  • 批准号:
    RGPIN-2015-06230
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Options for Characterizing and Deriving Groups of Interactive Agents
用于表征和导出交互式代理组的有效选项
  • 批准号:
    RGPIN-2015-06230
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Options for Characterizing and Deriving Groups of Interactive Agents
用于表征和导出交互式代理组的有效选项
  • 批准号:
    RGPIN-2015-06230
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Parameterized complexity analysis in cognitive science
认知科学中的参数化复杂性分析
  • 批准号:
    228104-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Parameterized complexity analysis in cognitive science
认知科学中的参数化复杂性分析
  • 批准号:
    228104-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Practical algorithms for common substructure problems in bioinformatics
生物信息学中常见子结构问题的实用算法
  • 批准号:
    228104-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Practical algorithms for common substructure problems in bioinformatics
生物信息学中常见子结构问题的实用算法
  • 批准号:
    228104-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Practical algorithms for common substructure problems in bioinformatics
生物信息学中常见子结构问题的实用算法
  • 批准号:
    228104-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

The effective and sustainable allocation of the land-based carbon dioxide removal options under changing climate
气候变化下陆基二氧化碳清除方案的有效和可持续分配
  • 批准号:
    24K20979
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modeling climate futures, impacts, response and adaptation options for Arctic communities
模拟北极社区的气候未来、影响、响应和适应方案
  • 批准号:
    2742590
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Improving future treatment options for menopausal symptoms by using genomics to understand aetiology
通过使用基因组学了解病因来改善更年期症状的未来治疗选择
  • 批准号:
    MR/Y003780/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
LEAP-HI: Compounding Risk Assessment and Mitigation Options for Building Infrastructure Experiencing Coastal Flooding-Related Saltwater Deterioration and Seismic Hazard
LEAP-HI:针对遭受沿海洪水相关的盐水恶化和地震灾害的基础设施建设的综合风险评估和缓解方案
  • 批准号:
    2245401
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Racial/Ethnic Disparities in Health Care and Challenges in Insurance Plan Choices among Older People with Alzheimer’s Disease and Related Dementia: A Mixed Methods Study of Medicare Options
患有阿尔茨海默病和相关痴呆症的老年人在医疗保健方面的种族/民族差异以及保险计划选择的挑战:医疗保险选项的混合方法研究
  • 批准号:
    10723148
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
THE COST PLUS FIXED FEE (CPFF) TO TO REFURBISH AND IMPROVE NCI FREDERICK INFRASTRUCTURE WILL HAVE A BASE AND THREE (3) OPTIONS.
翻新和改善 NCI Frederick 基础设施的成本加固定费用 (CPFF) 将有一个基础和三 (3) 个选项。
  • 批准号:
    10941348
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Enabling cloud-based net zero options assessment for non-domestic buildings
为非住宅建筑启用基于云的净零选项评估
  • 批准号:
    10065360
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative R&D
Engineered Lipid Nanoparticle miRNA-therapy Options for ARDS
ARDS 的工程脂质纳米颗粒 miRNA 治疗选择
  • 批准号:
    489495
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Operating Grants
Impact of Improving Footwear Options for Women Veterans with Amputations
改善截肢女退伍军人鞋类选择的影响
  • 批准号:
    10641398
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
  • 批准号:
    10819933
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了