Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
基本信息
- 批准号:RGPIN-2015-06396
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research program I am pursuing consists in investigating the interaction between theory and applications of nonlinear dynamics with symmetry, in particular the use of bifurcation theory. Symmetry is often an assumption in mathematical modelling using differential equations. Its origin is sometimes intrinsic to the phenomena/equations under study or symmetry appears as part of simplifying assumptions on the model. I am planning to explore the interaction between symmetry and nonlinear dynamics in the context of three major application areas: pattern formation in animal aggregation models, symmetrically coupled devices (e.g lasers, gyroscopes) and symmetric periodic orbits in Hamiltonian systems. The goals of my research program will be achieved by using application areas as a springboard to develop new tools in nonlinear dynamics with symmetry, and by using existing and new theory to contribute significantly to the application area.
The phenomenon of animal aggregation of individuals of the same species are observed from cells to large mammals and is recently the focus of major mathematical modelling efforts to complement a large body of experimental and empirical data. However, the theoretical basis and methods for the study of several of the patterns emerging from the models follows at a much slower pace and I am committed in the coming years to make important contributions in this area. In particular, symmetry has been shown to be a major factor in the patterns observed numerically in some partial differential equation models and my research expertise is ideally suited to continue making significant contributions in this exciting area of knowledge.
As the need for more powerful devices grows, networks have become popular alternatives to advance the fundamental limits of performance of an individual unit. Symmetrically coupling the devices is a convenient way to reduce the complexity of the system and favours the emergence of synchronization. The analysis of those models calls for the use of symmetric nonlinear dynamics and it is an important part of my research program to use my expertise in this domain to further the understanding of these coupled systems. Moreover, I expect that these application studies will lead to challenges which will stimulate the emergence of new theoretical results.
The search for collisionless periodic orbits in the Newtonian N-body problem has been revived by the finding of new orbits (e.g. Hip-Hop, Figure-Eight). The use of time-reversing and spatial symmetries has been an important aspect of this renewed activity. The topic of stability and bifurcations of periodic orbits with symmetry in the N-body problem received less interest and many questions still lie open. Part of my research program seeks to characterize linear and nonlinear stability and explore bifurcation issues using symmetric, topological and numerical tools.
我正在追求的研究计划包括研究具有对称性的非线性动力学的理论和应用之间的相互作用,特别是分叉理论的使用。对称性通常是使用微分方程进行数学建模的一个假设。它的起源有时是研究中的现象/方程的内在原因,或者对称性是模型简化假设的一部分。我计划在三个主要应用领域探索对称性和非线性动力学之间的相互作用:动物聚集模型中的模式形成,对称耦合设备(例如激光,陀螺仪)和哈密顿系统中的对称周期轨道。我的研究计划的目标将通过以应用领域为跳板来开发具有对称性的非线性动力学的新工具,并通过使用现有的和新的理论来为应用领域做出重大贡献来实现。
同一物种个体的动物聚集现象从细胞到大型哺乳动物都可以观察到,最近是主要的数学建模工作的重点,以补充大量的实验和经验数据。然而,研究模型中出现的几种模式的理论基础和方法的步伐要慢得多,我承诺在未来几年在这一领域做出重要贡献。特别是,对称性已被证明是在一些偏微分方程模型中数值观察到的模式的主要因素,我的研究专长非常适合继续在这一令人兴奋的知识领域做出重大贡献。
随着对更强大设备的需求的增长,网络已经成为提高单个存储单元性能的基本极限的替代方案。对称地耦合这些设备是降低系统复杂性的一种便利方式,并且有利于同步的出现。对这些模型的分析需要使用对称的非线性动力学,利用我在该领域的专业知识来加深对这些耦合系统的理解是我研究计划的重要部分。此外,我预计这些应用研究将带来挑战,这将刺激新的理论成果的出现。
由于新轨道的发现,在牛顿N体问题中寻找无碰撞周期轨道的工作重新开始(例如,Hip-Hop,八字)。时间反转和空间对称性的使用一直是这一新活动的一个重要方面。在N体问题中,具有对称性的周期轨道的稳定性和分叉的话题受到的兴趣较少,许多问题仍然悬而未决。我的部分研究项目试图用对称、拓扑和数值工具来刻画线性和非线性稳定性,并探索分叉问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Buono, PietroLuciano其他文献
Buono, PietroLuciano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Buono, PietroLuciano', 18)}}的其他基金
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory of differential equations with symmetry
对称性微分方程的分岔理论
- 批准号:
216932-2010 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory of differential equations with symmetry
对称性微分方程的分岔理论
- 批准号:
216932-2010 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory of differential equations with symmetry
对称性微分方程的分岔理论
- 批准号:
216932-2010 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory of differential equations with symmetry
对称性微分方程的分岔理论
- 批准号:
216932-2010 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory of differential equations with symmetry
对称性微分方程的分岔理论
- 批准号:
216932-2010 - 财政年份:2010
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Local bifurcation theory of retarded functional differential equations with structure
具有结构的滞后泛函微分方程的局部分岔理论
- 批准号:
216932-2005 - 财政年份:2009
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applications of Lie Theory: Combinatorial Algebraic Geometry and Symmetric Functions
李理论的应用:组合代数几何和对称函数
- 批准号:
1954001 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
On the combinatorics of core partitions and applications to the representation theory of the symmetric group.
关于核心划分的组合学及其在对称群表示论中的应用。
- 批准号:
2104708 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Studentship
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics of Symmetric Functions and its Applications to Representation Theory and Enumerative Combinatorics
对称函数的代数组合及其在表示论和枚举组合学中的应用
- 批准号:
18K03208 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Construction of harmonic maps into non-compact symmetric spaces via loop groups and applications to surface theory
通过环群将调和映射构造为非紧对称空间及其在表面理论中的应用
- 批准号:
15K04834 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory and applications of symmetric bifurcation theory
对称分岔理论的理论与应用
- 批准号:
RGPIN-2015-06396 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Applications of geometry of symmetric spaces to submanifold theory
对称空间几何在子流形理论中的应用
- 批准号:
23540108 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)