Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
基本信息
- 批准号:RGPIN-2015-06563
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long term goal of this proposed research program is to develop innovative integration strategies and fusion methods for the scientific advancement related to the accurate characterization of vegetation canopies from remotely sensed data. It is motivated and driven by technological developments in remote sensing and the demand for advancing science and innovation in vegetation characterization. Rapidly developed remote sensing technologies are making earth observation data widely available in unprecedented volume and detail; and meanwhile recent years have witnessed an increased demand for accurate determination of a growing number of attributes of vegetation canopies using remote sensing for sustainable management of forest resources, environment protection, and precision agriculture. The critical question we currently face is how to effectively utilize these data and intelligently integrate them together to improve vegetation characterization, such as the determination of vegetation types and conditions.
Even though data/information fusion is not a new topic in the remote sensing community, the increasing number and heterogeneity of information sources, coupled with the complexity of vegetation canopies leads to an increasing demand for advanced methods to fully exploit the available technologies, geospatial data, and accumulated knowledge. In this research, I propose innovative integration strategies that are active, intelligent and adaptive, and physics-and knowledge-based, representing a new paradigm in data fusion. These strategies deal with not only methodologies for information combination, but also mechanisms for information selection which actively control and manage the fusion process. With them, the whole scene is not necessarily analyzed in the same way; information and procedures used can be adaptive to local characteristics.
The long-term research goal will be achieved through fulfilling the following short-term objectives addressing three important aspects in the characterization of vegetation canopies that are unique in term of algorithm development. (1) Developing intelligent integration approaches to improve individual tree crown delineation. (2) Developing innovative methods to adaptively combine all information obtained from different data sources and improve forest species classification. (3) Developing knowledge-based progressive inversion strategies to improve the retrieval of vegetation parameters using the multi-source remotely sensed data.
The success of this program will have a great impact on research and development of information fusion and vegetation characterization. Research results will generate new knowledge and improve our understanding of different sensing technologies and their integrations in vegetation characterization and advance scientific and industrial applications.
这项研究计划的长期目标是开发创新的整合策略和融合方法,以促进与遥感数据准确表征植被冠层相关的科学进步。它的动机和驱动因素是遥感技术的发展以及对推进植被特征描述方面的科学和创新的需求。快速发展的遥感技术使地球观测数据以前所未有的数量和详细程度广泛提供;同时,近年来,人们越来越需要利用遥感准确确定越来越多的植被冠层属性,以实现森林资源的可持续管理、环境保护和精准农业。我们目前面临的关键问题是如何有效地利用这些数据,并将它们智能地整合在一起,以改善植被特征,例如确定植被类型和条件。
尽管数据/信息融合在遥感界并不是一个新的课题,但信息源的数量和异质性不断增加,加上植被冠层的复杂性,导致对先进方法的需求不断增加,以充分利用现有技术、地理空间数据和积累的知识。在这项研究中,我提出了创新的集成策略,是积极的,智能的和自适应的,物理和知识为基础的,代表了一个新的范式,在数据融合。这些策略不仅涉及信息组合的方法,而且还涉及主动控制和管理融合过程的信息选择机制。有了它们,整个场景不一定以相同的方式进行分析;所使用的信息和程序可以适应当地的特点。
长期研究目标将通过实现以下短期目标来实现,这些目标涉及在算法开发方面独特的植被冠层表征的三个重要方面。(1)开发智能集成方法,以改善个体树冠描绘。(2)开发创新方法,自适应地将从不同数据源获得的所有信息联合收割机结合起来,改进森林物种分类。(3)发展以知识为基础的渐进式反演策略,以改善多源遥感数据的植被参数反演。
该项目的成功将对信息融合和植被特征化的研究与发展产生重大影响。研究结果将产生新的知识,提高我们对不同传感技术及其在植被表征中的整合的理解,并推进科学和工业应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hu, Baoxin其他文献
An individual tree crown delineation method based on multi-scale segmentation of imagery
- DOI:
10.1016/j.isprsjprs.2012.04.003 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:12.7
- 作者:
Jing, Linhai;Hu, Baoxin;Li, Jili - 通讯作者:
Li, Jili
Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data
- DOI:
10.1016/j.jag.2013.06.003 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:7.5
- 作者:
Hu, Baoxin;Li, Jili;Judah, Aaron - 通讯作者:
Judah, Aaron
Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model
- DOI:
10.1016/j.rse.2010.01.004 - 发表时间:
2010-06-15 - 期刊:
- 影响因子:13.5
- 作者:
Liu, Jiangui;Pattey, Elizabeth;Hu, Baoxin - 通讯作者:
Hu, Baoxin
Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data
- DOI:
10.1080/01431160802558659 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:3.4
- 作者:
Fan, Wenyi;Hu, Baoxin;Li, Mingze - 通讯作者:
Li, Mingze
Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation
- DOI:
10.14358/pers.78.11.1275 - 发表时间:
2012-12-01 - 期刊:
- 影响因子:1.3
- 作者:
Jing, Linhai;Hu, Baoxin;Noland, Thomas - 通讯作者:
Noland, Thomas
Hu, Baoxin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hu, Baoxin', 18)}}的其他基金
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
- 批准号:
RGPIN-2021-03624 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
- 批准号:
RGPIN-2021-03624 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
- 批准号:
513708-2017 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research and Development Grants
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
- 批准号:
513708-2017 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
- 批准号:
490711-2015 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
- 批准号:
490711-2015 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
- 批准号:
RGPIN-2015-06563 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
INNUMAT: Innovative Structural Materials for Fission and Fusion
INNUMAT:用于裂变和聚变的创新结构材料
- 批准号:
10047145 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
EU-Funded
IDP mediated transcriptional stabilization as a cause of AML
IDP 介导的转录稳定是 AML 的一个原因
- 批准号:
10419497 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Understanding geological time: An innovative fusion of diagenetic and cyclostratigraphic concepts to reconstruct sediment composition, deposition rate, and geological time spans
了解地质时间:成岩和旋回地层概念的创新融合,以重建沉积物成分、沉积速率和地质时间跨度
- 批准号:
498286524 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
WBP Position
Developing an Innovative Decision Support Tool for Pediatric Neuromuscular Scoliosis
开发儿童神经肌肉脊柱侧凸的创新决策支持工具
- 批准号:
10449660 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Developing an Innovative Decision Support Tool for Pediatric Neuromuscular Scoliosis
开发儿童神经肌肉脊柱侧凸的创新决策支持工具
- 批准号:
10663314 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
IDP mediated transcriptional stabilization as a cause of AML
IDP 介导的转录稳定是 AML 的一个原因
- 批准号:
10588195 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
An Innovative Molecular Fusion Format That Targets Ion Channel-Driven Diseases
针对离子通道驱动疾病的创新分子融合形式
- 批准号:
99451 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative R&D
Development of innovative therapy for autoantibody-related disorders using fusion proteins combining IgG1Fc and extracellular domains of target antigen.
使用结合 IgG1Fc 和靶抗原细胞外结构域的融合蛋白开发针对自身抗体相关疾病的创新疗法。
- 批准号:
21K19438 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of a high resolution assay to characterize exocytotic vesicle fusion
开发高分辨率测定法来表征胞吐囊泡融合
- 批准号:
10041876 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Development of innovative high-strength bronze Nb3Sn superconducting wire for fusion utilizing external Sn diffusion
利用外部锡扩散开发用于熔合的创新型高强度青铜 Nb3Sn 超导线材
- 批准号:
20H01889 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)