Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data

开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征

基本信息

  • 批准号:
    RGPIN-2015-06563
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The long term goal of this proposed research program is to develop innovative integration strategies and fusion methods for the scientific advancement related to the accurate characterization of vegetation canopies from remotely sensed data. It is motivated and driven by technological developments in remote sensing and the demand for advancing science and innovation in vegetation characterization. Rapidly developed remote sensing technologies are making earth observation data widely available in unprecedented volume and detail; and meanwhile recent years have witnessed an increased demand for accurate determination of a growing number of attributes of vegetation canopies using remote sensing for sustainable management of forest resources, environment protection, and precision agriculture. The critical question we currently face is how to effectively utilize these data and intelligently integrate them together to improve vegetation characterization, such as the determination of vegetation types and conditions.
这一拟议研究计划的长期目标是开发创新的整合战略和融合方法,以促进与从遥感数据准确表征植被冠层相关的科学进步。它是由遥感技术的发展以及对推进植被特征的科学和创新的需求所推动和推动的。快速发展的遥感技术使对地观测数据以前所未有的数量和细节广泛可用;同时,近年来越来越多的人需要利用遥感准确确定越来越多的植被冠层属性,以实现森林资源的可持续管理、环境保护和精准农业。我们目前面临的关键问题是如何有效地利用这些数据,并将它们智能地整合在一起,以改进植被特征,如确定植被类型和条件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hu, Baoxin其他文献

An individual tree crown delineation method based on multi-scale segmentation of imagery
Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data
Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model
  • DOI:
    10.1016/j.rse.2010.01.004
  • 发表时间:
    2010-06-15
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Liu, Jiangui;Pattey, Elizabeth;Hu, Baoxin
  • 通讯作者:
    Hu, Baoxin
Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data
Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation

Hu, Baoxin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hu, Baoxin', 18)}}的其他基金

Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
  • 批准号:
    RGPIN-2021-03624
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
  • 批准号:
    RGPIN-2021-03624
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
  • 批准号:
    513708-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
  • 批准号:
    513708-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
  • 批准号:
    490711-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
  • 批准号:
    490711-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

INNUMAT: Innovative Structural Materials for Fission and Fusion
INNUMAT:用于裂变和聚变的创新结构材料
  • 批准号:
    10047145
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    EU-Funded
IDP mediated transcriptional stabilization as a cause of AML
IDP 介导的转录稳定是 AML 的一个原因
  • 批准号:
    10419497
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Understanding geological time: An innovative fusion of diagenetic and cyclostratigraphic concepts to reconstruct sediment composition, deposition rate, and geological time spans
了解地质时间:成岩和旋回地层概念的创新融合,以重建沉积物成分、沉积速率和地质时间跨度
  • 批准号:
    498286524
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    WBP Position
Developing an Innovative Decision Support Tool for Pediatric Neuromuscular Scoliosis
开发儿童神经肌肉脊柱侧凸的创新决策支持工具
  • 批准号:
    10449660
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Developing an Innovative Decision Support Tool for Pediatric Neuromuscular Scoliosis
开发儿童神经肌肉脊柱侧凸的创新决策支持工具
  • 批准号:
    10663314
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
IDP mediated transcriptional stabilization as a cause of AML
IDP 介导的转录稳定是 AML 的一个原因
  • 批准号:
    10588195
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
An Innovative Molecular Fusion Format That Targets Ion Channel-Driven Diseases
针对离子通道驱动疾病的创新分子融合形式
  • 批准号:
    99451
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative R&D
Development of innovative therapy for autoantibody-related disorders using fusion proteins combining IgG1Fc and extracellular domains of target antigen.
使用结合 IgG1Fc 和靶抗原细胞外结构域的融合蛋白开发针对自身抗体相关疾病的创新疗法。
  • 批准号:
    21K19438
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of a high resolution assay to characterize exocytotic vesicle fusion
开发高分辨率测定法来表征胞吐囊泡融合
  • 批准号:
    10041876
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
Development of innovative high-strength bronze Nb3Sn superconducting wire for fusion utilizing external Sn diffusion
利用外部锡扩散开发用于熔合的创新型高强度青铜 Nb3Sn 超导线材
  • 批准号:
    20H01889
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了