Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
基本信息
- 批准号:RGPIN-2016-04631
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of this proposal is to develop statistical methodologies to quantify the association between a time-dependent covariate and the time until an event of particular interest occurs. For example, investigating the reliability of a critical unit is crucial to guarantee the overall functional capabilities of a system in engineering applications. In such a study, the aim is to evaluate whether the degradation signal of the unit is significantly associated with the risk of failure of the entire system. One common problem encountered in such studies is that the time-dependent covariate (e.g., degradation signal) is often measured with error, and failure to account for such error in the analyses leads to a biased estimate of the association between the covariate and the time to the occurrence of the event. The modern approach to analyze these types of data involves two separate models: a model that takes into account the measurement error in the time-dependent covariate to estimate its true values (longitudinal model), and another model that uses these estimated values to quantify the association between this covariate and the time to the occurrence of the event (time-to-event model). The motivating idea behind the joint modeling techniques is to couple the time-to-event model with the longitudinal model. The standard approach is to consider a linear model for the time-dependent covariate (i.e., the longitudinal response) and a relative risk model for the association analysis. However, there are situations where more flexible techniques are required to appropriately model these two processes. I will emphasize three main topics which the standard approach cannot properly handle, and requires further methodological development. The first topic considers situations where the time-to-event process involves a sequence of events for which a multi-state relative risk model is required to characterize the transitions among the states/events. The second topic considers situations where the longitudinal trajectories exhibit a transition between two linear phases, so that the linearity assumption does not hold. The third topic involves two or more longitudinal binary responses for which the inherent association between them needs to be taken into account to investigate their effects on the time to the occurrence of the event. My long-term goal is to develop methods for joint modeling of longitudinal and time-to-event data. This will be pursued via three short-term objectives, each of which involves novel statistical methods appropriate for PhD students. In fact, my research aims at innovative statistical methods, which involve both theory and computation, and applications in natural sciences. The participation and training of students to help complete the objectives of this proposal is quite important. All students will be trained to get started toward a research career or inspiring employment.
该提案的主要重点是开发统计方法来量化时间相关协变量与特别感兴趣的事件发生之前的时间之间的关联。例如,研究关键单元的可靠性对于保证工程应用中系统的整体功能能力至关重要。在此类研究中,目的是评估装置的退化信号是否与整个系统的故障风险显着相关。此类研究中遇到的一个常见问题是,与时间相关的协变量(例如,退化信号)的测量常常存在误差,并且在分析中未能考虑到此类误差会导致对协变量与事件发生时间之间关联的估计存在偏差。分析这些类型数据的现代方法涉及两个独立的模型:一个模型考虑时间相关协变量中的测量误差来估计其真实值(纵向模型),另一个模型使用这些估计值来量化该协变量与事件发生时间之间的关联(事件时间模型)。联合建模技术背后的动机是将事件时间模型与纵向模型耦合起来。标准方法是考虑时间相关协变量(即纵向响应)的线性模型和关联分析的相对风险模型。然而,在某些情况下,需要更灵活的技术来对这两个过程进行适当的建模。我将强调标准方法无法正确处理、需要进一步发展方法论的三个主要主题。第一个主题考虑事件时间过程涉及一系列事件的情况,对于这些事件,需要多状态相对风险模型来表征状态/事件之间的转换。第二个主题考虑纵向轨迹在两个线性阶段之间呈现过渡的情况,因此线性假设不成立。第三个主题涉及两个或多个纵向二元响应,需要考虑它们之间的固有关联,以研究它们对事件发生时间的影响。我的长期目标是开发纵向数据和事件时间数据联合建模的方法。这将通过三个短期目标来实现,每个目标都涉及适合博士生的新颖统计方法。事实上,我的研究目标是创新的统计方法,涉及理论和计算,以及在自然科学中的应用。学生的参与和培训对于帮助完成本提案的目标相当重要。所有学生都将接受培训,以开始研究生涯或鼓舞人心的就业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan, Shahedul其他文献
Association between air pollution and multiple respiratory hospitalizations among the elderly in Vancouver, Canada
- DOI:
10.1080/08958370600904538 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:2.1
- 作者:
Fung, Karen Y.;Khan, Shahedul;Chen, Yue - 通讯作者:
Chen, Yue
Khan, Shahedul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan, Shahedul', 18)}}的其他基金
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Joint longitudinal and survival models for intensive longitudinal data from mobile health studies of smoking cessation
来自戒烟移动健康研究的密集纵向数据的联合纵向和生存模型
- 批准号:
10677935 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Dynamic prediction of type 1 diabetes risk and autoantibody status by a joint model of longitudinal and multistate models
通过纵向和多状态模型的联合模型动态预测1型糖尿病风险和自身抗体状态
- 批准号:
10630731 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, model comparison and*checking, and joint longitudinal models for disease progression
半参数混合模型:算法、模型比较和*检查以及疾病进展的联合纵向模型
- 批准号:
RGPIN-2014-05414 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Joint Models for Longitudinal and Time-to-Event Data
纵向和事件时间数据的联合模型
- 批准号:
RGPIN-2016-04631 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, model comparison and checking, and joint longitudinal models for disease progression
半参数混合模型:算法、模型比较和检查以及疾病进展的联合纵向模型
- 批准号:
RGPIN-2014-05414 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, model comparison andchecking, and joint longitudinal models for disease progression
半参数混合模型:算法、模型比较和检查以及疾病进展的联合纵向模型
- 批准号:
RGPIN-2014-05414 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual