Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
基本信息
- 批准号:RGPIN-2016-04716
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
After more than a century of advances in the automotive industry, about 85 percent of fuel energy is still wasted in cars and is lost in the air. Similar scenarios occur with agricultural machines, trains, and airplanes. The energy waste does not only affect the economy, but also the environment. Smart materials are one of the promising alternatives for the reduction of energy consumption and for harvesting energy from these wasted energy resources. Smart multiphysics materials with multifunctional and energy harvesting abilities and a low level of energy consumption are being developed to provide intelligent self-powered sensors and actuators. Lightweight cellular materials are another alternative to reduce energy consumption. Cellular solids offer a robust low-mass alternative for applications requiring lightweight and stiff components. Cellular-based metamaterials fashioned by repeating unit cells have also enabled engineers to achieve physical properties beyond those found in nature. Inspired by biological systems, in which structural properties, sensing, actuating, and self-healing are integrated, smart multifunctional metamaterials can be introduced as a robust, cost-effective alternative to integrate multiple functionalities of smart materials and metamaterials. Multifunctional materials can not only serve as energy harvesters, but also as structural elements, self-powered electric devices, self-integrated heat exchangers, and power sources via embedded fuel-cells or photovoltaics. Advances in additive manufacturing have shown that fabricating multifunctional metamaterials is feasible.
My NSERC Discovery program aims to develop novel metamaterials constructed of a cellular microarchitecture with struts of active materials. The multifunctional metamaterials will be lightweight, multistable, and responsive to elastic, electric, magnetic, thermal, hygroscopic, chemical, and optical fields. The objective of the research program is to establish a multiscale multiphysics methodology, to manufacture smart cellular solids, and to elucidate that metamaterials can replace traditional mechanical components. Such advanced materials have enormous applications; for instance, energy harvesters can harness energy from the vibration of the frame of automobiles and space vehicles and also from the heat wasted in the combustion process.
The research methodology consists of multiscale simulation, manufacturing, and experimental testing. The research provides a robust database for the innovative design of smart cellular solids. The successful development of multifunctional metamaterials will open a new multidisciplinary research direction and put Canada at the cutting edge of this technology. As a long-term objective, the research program aims to introduce novel smart metamaterials and a computational tool to a broad spectrum of industries.
在汽车行业有一个多世纪的进步之后,汽车中约有85%的燃油能量仍被浪费掉,并且在空中损失。农业机器,火车和飞机发生了类似的情况。能源浪费不仅影响经济,而且会影响环境。智能材料是减少能源消耗和从这些浪费能源资源中收集能源的有前途的选择之一。具有多功能和能源收集能力和低能源消耗的智能多物理学材料正在开发以提供智能的自动传感器和执行器。轻质的细胞材料是减少能耗的另一种选择。细胞固体为需要轻质和僵硬的组件的应用提供了强大的低质量替代方案。通过重复单元细胞制成的基于细胞的非材料也使工程师能够实现自然界中发现的物理特性。受生物系统的启发,在该系统中,可以将结构性能,传感,致动和自我修复综合起来,可以作为强大的,具有成本效益的替代方案引入智能多功能超材料,以整合智能材料和材料的多种功能。多功能材料不仅可以用作能量收割机,还可以通过嵌入式燃料电池或光伏电源材料作为结构元素,自动电动设备,自我启动的热交换器和功率来源。添加剂制造业的进步表明,制造多功能超材料是可行的。
我的NSERC发现计划旨在开发由用活性材料支撑的细胞微体系结构构建的新型超材料。多功能的超材料将轻巧,多稳定且对弹性,电气,磁性,热,吸湿性,化学和光场响应。研究计划的目的是建立多尺度多物理学方法,以制造智能细胞固体,并阐明超材料可以取代传统的机械组件。这样的先进材料具有巨大的应用;例如,能量收割者可以利用汽车和太空车辆框架的振动以及在燃烧过程中浪费的热量来利用能量。
研究方法包括多尺度模拟,制造和实验测试。该研究为智能细胞固体的创新设计提供了强大的数据库。多功能交流材料的成功开发将打开一个新的多学科研究方向,并使加拿大处于这项技术的最前沿。作为一个长期目标,该研究计划旨在将新颖的智能超材料和计算工具引入广泛的行业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AkbarzadehShafaroudi, Abdolhamid其他文献
AkbarzadehShafaroudi, Abdolhamid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AkbarzadehShafaroudi, Abdolhamid', 18)}}的其他基金
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Programmable Architected Multifunctional Metamaterials and Metastructures
可编程架构多功能超材料和超结构
- 批准号:
RGPIN-2022-04493 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Bio-Inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
邻苯醌二亚胺在催化不对称串联反应中的多功能性研究
- 批准号:22371265
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多功能CuFeOx纳米酶在烧伤创面治疗中的应用探索及机制研究
- 批准号:82372552
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多功能酵母微纳生物机器人主动靶向治疗膀胱炎的研究
- 批准号:82302374
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
富营养化、增温和热浪对淡水生态系统多功能性的影响
- 批准号:32301367
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人诱导多功能干细胞选择性荧光探针组合的设计与合成:多色染色及多细胞器靶向染色策略
- 批准号:22377042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual