Programmable Architected Multifunctional Metamaterials and Metastructures
可编程架构多功能超材料和超结构
基本信息
- 批准号:RGPIN-2022-04493
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Increasing global concerns about energy production, environmental pollution, and economy growth demand groundbreaking avenues for highly efficient structural and energy materials. Load-bearing, shape-transforming, energy converting, and autonomous sensing properties should coexist in multipurpose smart materials to unlock an unprecedented material property space for addressing the challenging demands. Multifunctional metamaterials can meet multiple functional requirements and deliver properties beyond what are found in naturally occurring materials. The unrivalled properties of metamaterials are mainly derived from their intricate underlying architecture. Additive manufacturing has emerged as a frontrunner for facile fabrication of mechanical metamaterials. The versatility of 3D printing-assisted fabrication also allows the production of functionalized passive/active ferroelectric materials to realize previously impossible smart metamaterials for tactile/temperature sensors and energy harvesters. The majority of rational designs of metamaterials have relied on intuition. However, tuning the unmatched properties of multifunctional metamaterials, comprised of mechanics and smart material realms, calls for understanding their programmability and size-effect traits. While metamaterials are usually periodic, metabeams/plates do not share the same level of periodicity. These advocate the necessity of developing a self-sufficient theory for designing multifunctional metamaterials/structures. Long-term vision of this research is to develop a platform for systematic, rather than intuitive, design of metamaterials for targeted functionalities. As short-term objectives and with roots in cellular solids and smart materials, we aim at creating programmable, reconfigurable, and size-dependent ferroelectric metamaterials. We inspire from crystallographic symmetry classes, harness elastic instability, exploit multiphysical stimuli, and utilize advanced manufacturing to introduce novel classified multifunctional metamaterials/structures. We resort to delicate topological design of cellular architecture and constitutive hinges, stability analyses, generalized continuum theory, multiphysics simulation, 3D printing, and experimental thermo-electro-mechanical characterization tests. The programmable and tunable architected multifunctional metamaterials/structures will enable offering cutting-edge economic solutions for the realization of next generation resilient smart components. This program provides HQP with well-defined training plans to gain a unique blend of expertise in architectural metamaterial design, non-classical continuum-based modelling, multiscale multiphysics simulation, 3D printing and advanced fabrication, and experimental material characterization. The trained skillful HQP will eventually contribute towards smart material innovation and keep Canada as a leader in additively-manufactured products and piezoelectric devices.
全球对能源生产、环境污染和经济增长的日益关注,要求开辟高效结构和能源材料的突破性途径。承载,形状转换,能量转换和自主传感特性应该在多用途智能材料中共存,以解锁前所未有的材料特性空间,以满足具有挑战性的需求。多功能超材料可以满足多种功能要求,并提供超出天然材料的性能。超材料无与伦比的特性主要来自其复杂的底层结构。增材制造已经成为机械超材料简易制造的领跑者。3D打印辅助制造的多功能性还允许生产功能化的无源/有源铁电材料,以实现以前不可能实现的用于触觉/温度传感器和能量收集器的智能超材料。大多数超材料的合理设计都依赖于直觉。然而,调整由力学和智能材料领域组成的多功能超材料的无与伦比的特性,需要了解它们的可编程性和尺寸效应特性。虽然超材料通常是周期性的,但超光束/板不具有相同的周期性。这些主张的必要性,发展一个自给自足的理论,设计多功能的超材料/结构。这项研究的长期愿景是开发一个平台,用于系统而不是直观地设计具有目标功能的超材料。作为短期目标,并在细胞固体和智能材料的根源,我们的目标是创造可编程的,可重构的,和尺寸依赖的铁电超材料。我们的灵感来自晶体学对称类,利用弹性不稳定性,利用多物理刺激,并利用先进的制造引入新的分类多功能超材料/结构。我们采用细胞结构和本构铰链的精细拓扑设计、稳定性分析、广义连续介质理论、多物理场模拟、3D打印和实验热机电特性测试。可编程和可调架构的多功能超材料/结构将为实现下一代弹性智能组件提供尖端的经济解决方案。该计划为HQP提供了明确的培训计划,以获得建筑超材料设计,非经典连续建模,多尺度多物理场模拟,3D打印和先进制造以及实验材料表征方面的独特专业知识。训练有素的HQP最终将为智能材料创新做出贡献,并保持加拿大在增材制造产品和压电器件方面的领先地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AkbarzadehShafaroudi, Abdolhamid其他文献
AkbarzadehShafaroudi, Abdolhamid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AkbarzadehShafaroudi, Abdolhamid', 18)}}的其他基金
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Canada Research Chairs
Bio-Inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Canada Research Chairs
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Canada Research Chairs
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Bio-inspired Hierarchical Multifunctional Metamaterials
仿生分层多功能超材料
- 批准号:
CRC-2019-00148 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Canada Research Chairs
Optimized Design of 3D Printed Lightweight Architected Shellular Materials
3D 打印轻质建筑贝壳材料的优化设计
- 批准号:
543334-2019 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Advanced Multifunctional and Multiphysics Metamaterials for Mechanical Element Design
用于机械元件设计的先进多功能和多物理超材料
- 批准号:
RGPIN-2016-04716 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Crystallographically-Architected Mechanical Metamaterials (CrystArMM)
晶体结构机械超材料 (CrystArMM)
- 批准号:
EP/X019470/1 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Research Grant
CAREER: New Polarizations of Elastic Waves in Architected Materials
职业:建筑材料中弹性波的新极化
- 批准号:
2341003 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
CAREER: Nudging and Leveraging the Onset of Buckling in Architected Materials for Performance Gains
职业:推动和利用建筑材料的屈曲来提高性能
- 批准号:
2237313 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics
职业:坚韧的建筑混凝土材料:仿生设计、制造和力学
- 批准号:
2238992 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245299 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Additive manufacturing-enabled micro-architected cellular composites for energy materials
用于能源材料的增材制造微架构蜂窝复合材料
- 批准号:
2887855 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
Additive manufacturing-enabled micro-architected cellular composites for energy materials
用于能源材料的增材制造微架构蜂窝复合材料
- 批准号:
2894119 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
RII Track-4: NSF: Soft Architected Metamaterials for Extreme Energy Dissipation
RII Track-4:NSF:用于极端能量耗散的软架构超材料
- 批准号:
2226563 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Inverse Design of Architected Materials with Prescribed Behaviors via Graph Based Networks and Additive Manufacturing
DMREF/协作研究:通过基于图形的网络和增材制造对具有规定行为的建筑材料进行逆向设计
- 批准号:
2119643 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant














{{item.name}}会员




