Interactions between L-functions and sieve methods

L 函数和筛法之间的相互作用

基本信息

  • 批准号:
    RGPIN-2016-04908
  • 负责人:
  • 金额:
    $ 3.28万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Recently analytic number theory is undergoing a revolution. Many old questions have been solved and moreover a vast synthesis and simplification of the techniques is taking place. First in the theory of $L$-functions, we now understand conjecturally that the finer behavior of an $L$-function is governed by random matrix statistics. Much work went into verifying these conjectures, either unconditionally or conditionally on the assumption of the Riemann Hypothesis. Here spectacular results on moments have been recently obtained by Harper conditionally on the Riemann Hypothesis, leading to a near solution of the moment problem. Second, in sieve theory the method of Goldston-Pintz-Yildrim has been understood to be much more powerful than expected. For example it led to a relatively elementary proof of the existence of bounded gaps between primes, due to Maynard-Tao. This gave a different approach to the previous deep work of Zhang. Third, in the study of automorphic forms, the central problem of Quantum Unique Ergodicity has been resolved by Holowinsky and Soundararajan and by Lindenstrauss I propose to investigate the inter-connection between methods coming from sieve theory and those usually used in the study of L-functions. This will rely from time to time on importing techniques from probability, which are currently flourishing in both subjects, and will likely have also side applications to the study of automorphic forms. In my work on the sieve the long term goal is to make 1) further progress on Chowla's conjecture, 2) investigate if analogous results could be obtained for primes and 3) investigate Sarnak's conjecture on the entropy of the Liouville function. Some of these projects in particular 2) could have noteworthy applications for cryptography, for example they could lead to showing that there are infinitely many primes p such that p-1 has a large prime factor. In my work on L-functions the long term goal is to make further progress on the conjectures of Keating-Snaith on the statistical behavior of central values of L-functions and to gain a better understanding of the very recent methods of Aistleitner and Bondarenko-Seip allowing one to work with very long but sparse Dirichlet polynomials.
最近解析数论正在经历一场革命。许多老问题已经解决,而且正在进行大量的技术综合和简化。 首先,在$L $-函数的理论中,我们现在理解了$L $-函数的更精细的行为是由随机矩阵统计决定的。许多工作都是为了验证这些假设,无论是无条件的还是有条件的假设黎曼假设。在这里壮观的结果时刻最近已获得哈珀有条件的黎曼假设,导致一个近解决的时刻问题。 第二,在筛子理论中,戈德斯通-平茨-耶尔德林的方法被认为比预期的要强大得多。例如,它导致了一个相对初级的证明存在有界差距之间的素数,由于梅纳德道。这给了一个不同的方法,以前的深入工作的张。 第三,在自守形式的研究中,量子唯一遍历性的中心问题已经由Holowinsky和Soundararajan以及Lindenstrauss解决。 我建议调查筛理论的方法和那些通常用于L-函数的研究之间的相互联系。这将不时依赖于从概率中引进技术,这些技术目前在这两个学科中都很发达,并且很可能也会在自守形式的研究中得到应用。 在我的工作筛的长期目标是使1)进一步的进展Chowla的猜想,2)调查,如果类似的结果可以获得素数和3)调查Sarnak的猜想熵的刘维函数。其中一些项目特别是2)可能在密码学方面有值得注意的应用,例如,它们可能导致证明存在无穷多个素数p,使得p-1有一个大的素数因子。 在我的工作L-函数的长期目标是取得进一步的进展,对austertures基廷-斯奈思的统计行为的中心值的L-函数,并获得更好的理解最近的方法Aistleitner和Bondarenko-Seip允许一个工作与非常长,但稀疏狄利克雷多项式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radziwill, Maksym其他文献

Refinements of Gal's theorem and applications
  • DOI:
    10.1016/j.aim.2016.09.006
  • 发表时间:
    2017-01-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lewko, Mark;Radziwill, Maksym
  • 通讯作者:
    Radziwill, Maksym

Radziwill, Maksym的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Radziwill, Maksym', 18)}}的其他基金

Number theory
数论
  • 批准号:
    1000231110-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Canada Research Chairs
Interactions between L-functions and sieve methods
L 函数和筛法之间的相互作用
  • 批准号:
    RGPIN-2016-04908
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions between L-functions and sieve methods
L 函数和筛法之间的相互作用
  • 批准号:
    RGPIN-2016-04908
  • 财政年份:
    2017
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Number theory
数论
  • 批准号:
    1000231110-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Canada Research Chairs
Number theory
数论
  • 批准号:
    1000231110-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Canada Research Chairs
Moments of the Riemann Zeta function
黎曼 Zeta 函数的矩
  • 批准号:
    404708-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Moments of the Riemann Zeta function
黎曼 Zeta 函数的矩
  • 批准号:
    404708-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Large deviations of arithmetic functions
算术函数偏差大
  • 批准号:
    378444-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Postgraduate Scholarships - Master's
Large deviations of arithmetic functions
算术函数偏差大
  • 批准号:
    378444-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Postgraduate Scholarships - Master's
Topics in analytic number theory
解析数论主题
  • 批准号:
    383449-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 3.28万
  • 项目类别:
    University Undergraduate Student Research Awards

相似海外基金

Elucidation and functions of attractive interactions between metal cluster and aromatic units
金属簇和芳香单元之间吸引力相互作用的阐明和作用
  • 批准号:
    18H01987
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interactions between L-functions and sieve methods
L 函数和筛法之间的相互作用
  • 批准号:
    RGPIN-2016-04908
  • 财政年份:
    2018
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions between L-functions and sieve methods
L 函数和筛法之间的相互作用
  • 批准号:
    RGPIN-2016-04908
  • 财政年份:
    2017
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
DISSERTATION RESEARCH: Diversity and Functions of Interactions between the Liverwort Marchantia polymorpha and its Fungal Endophytes
论文研究:地钱及其内生真菌相互作用的多样性和功能
  • 批准号:
    1501826
  • 财政年份:
    2015
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Standard Grant
Interactions between sleep and complement-driven regulation of intestinal dendritic cell functions (C07)
睡眠与补体驱动的肠道树突状细胞功能调节之间的相互作用 (C07)
  • 批准号:
    139304457
  • 财政年份:
    2009
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Collaborative Research Centres
Elucidation of functions of proteins in terms of dynamical interactions between proteins and water molecules
通过蛋白质与水分子之间的动态相互作用阐明蛋白质的功能
  • 批准号:
    21740307
  • 财政年份:
    2009
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Interactions between perirhinal cortex and other forebrain structures mediating object-related memory functions in the rat.
大鼠鼻周皮层和其他前脑结构之间的相互作用介导与物体相关的记忆功能。
  • 批准号:
    301957-2004
  • 财政年份:
    2009
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Relations between structure of biological communities and ecosystem functions determined by interactions of predation and competition
捕食与竞争相互作用决定的生物群落结构与生态系统功能之间的关系
  • 批准号:
    19570024
  • 财政年份:
    2007
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interactions between perirhinal cortex and other forebrain structures mediating object-related memory functions in the rat.
大鼠鼻周皮层和其他前脑结构之间的相互作用介导与物体相关的记忆功能。
  • 批准号:
    301957-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions between perirhinal cortex and other forebrain structures mediating object-related memory functions in the rat.
大鼠鼻周皮层和其他前脑结构之间的相互作用介导与物体相关的记忆功能。
  • 批准号:
    301957-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 3.28万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了