Femtosecond electron sources for atomically-resolved dynamics and ultrafast high-resolution imaging
用于原子分辨动力学和超快高分辨率成像的飞秒电子源
基本信息
- 批准号:RGPIN-2014-05564
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrafast lasers provided the “first light” in sufficiently short pulses to monitor atomic motion on the relevant timescales; below a millionth of a millionth of a second, to literally catch atoms on the fly as in stop-motion photography. However, the spatial resolution in conventional optical spectroscopy is limited to about the size of a big virus. This is about ten thousand times too coarse to observe the molecular structure at its finest detail, down to its fundamental building blocks – atoms. The progress in the development of ultrafast structure-sensitive cameras over the last 20 years has been tremendous, with large scale, kilometers long facilities such as LCLS (Stanford) built to provide us with the temporal and spatial resolutions required to observe atoms in motion. Germán Sciaini heads a group at the University of Waterloo that develops such “atomic-level” cameras in a compact design that fits on a table with the size of a standard office desk. His cameras are based on the use of ultra-short and bright electron bursts which can be applied to a wide range of structural problems. Our group develops home-built ultrafast electron diffraction setups which provide direct access to structural dynamics with atomic spatial and temporal resolutions. Special attention is paid to the study of strongly correlated transition metal oxides and organometallic materials. Dynamical studies of electron-electron, electron-phonon, and phonon-phonon interactions allow us to achieve an atomic-level understanding of structure-functional properties of novel materials. We also implement nanofluidics for the study of organometallic complexes in solution to investigate the effect of "d orbital" electronic degeneracy on the nuclear structure, i.e. Jahn Teller distortion. Another research area of great interest is the development of ultrafast cryo-electron microscopy. A new technique that will allow us to gain access to high-resolution (< 2 Å) structures of biomolecules at the single particle level without the need of crystallization. The long term goal of this research line involves structural studies of ribosomal-RNAs with atomic resolution. This research line is devoted to the investigation of the molecular basis of disease states at the atomic level of inspection. These studies are crucial for drug design aimed at the prevention of illness. These research programs are highly multidisciplinary and bridge ongoing efforts in the Department of Chemistry, the Quantum Matter Group in the Department of Physics, the Materials Engineering Group in Centre for Advanced Materials Joining, and the Institute of Biochemistry and Molecular Biology of Waterloo. Only 46 years ago, transition states, bond breaking and bond formation events were thought to be invisible and immeasurably fast. Nowadays, we have reached the spatial and temporal resolutions required to observe atoms in motion and, with that, been able to provide the most fundamental understanding of dynamical phenomena relevant to physics, chemistry, and biology. Our research is focused on this enabling technology, its fundamental science and its critical applications.
超快激光器提供了“第一束光”,脉冲足够短,可以在相关的时间尺度上监测原子的运动;低于百万分之一秒,可以像定格摄影一样捕捉飞行中的原子。然而,传统光谱学的空间分辨率仅限于大病毒的大小。这是大约一万倍太粗糙观察分子结构在其最精细的细节,下降到其基本的积木-原子。在过去的20年里,超快结构敏感相机的发展取得了巨大的进步,大型的,长达数公里的设施,如LCLS(斯坦福大学),为我们提供了观察运动中的原子所需的时间和空间分辨率。Germán Sciaini领导着滑铁卢大学的一个小组,该小组开发了这种紧凑设计的“原子级”相机,可以放在标准办公桌大小的桌子上。他的照相机是基于使用超短和明亮的电子爆发,可以应用于广泛的结构问题。我们的团队开发了自制的超快电子衍射装置,可以直接访问具有原子空间和时间分辨率的结构动力学。特别关注强关联的过渡金属氧化物和有机金属材料的研究。电子-电子、电子-声子和声子-声子相互作用的动力学研究使我们能够从原子水平上理解新材料的结构-功能特性。我们还实施nanofluidics的研究溶液中的有机金属配合物,以调查的影响,“d轨道”的电子简并对核结构,即Jahn Teller失真。另一个非常感兴趣的研究领域是超快冷冻电子显微镜的发展。一种新技术,将使我们能够在单粒子水平上获得生物分子的高分辨率(< 2 μ m)结构,而无需结晶。这条研究线的长期目标包括原子分辨率的核糖体RNA结构研究。这条研究线致力于在原子水平上研究疾病状态的分子基础。这些研究对于旨在预防疾病的药物设计至关重要。这些研究项目是高度多学科的,并在化学系,物理系量子物质组,先进材料加入中心的材料工程组以及滑铁卢生物化学和分子生物学研究所正在进行的努力中架起了桥梁。仅仅在46年前,过渡态、键断裂和键形成事件还被认为是不可见的,而且速度不可估量。如今,我们已经达到了观察运动中的原子所需的空间和时间分辨率,并且能够提供与物理,化学和生物学相关的动力学现象的最基本的理解。我们的研究重点是这种使能技术,其基础科学及其关键应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sciaini, Germán其他文献
Sciaini, Germán的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sciaini, Germán', 18)}}的其他基金
The Ultrafast electron Imaging Lab of Waterloo
滑铁卢超快电子成像实验室
- 批准号:
RGPIN-2020-06474 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
LIQUID-PHASE ULTRAFAST ELECTRON DIFFRACTION
液相超快电子衍射
- 批准号:
RTI-2022-00020 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Research Tools and Instruments
The Ultrafast electron Imaging Lab of Waterloo
滑铁卢超快电子成像实验室
- 批准号:
RGPIN-2020-06474 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Market Assessment for Universal Nanofluidic Cell with Loading Station
带装载站的通用纳米流体单元的市场评估
- 批准号:
544460-2019 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Idea to Innovation
Testing of Si-COAT 570 high voltage insulator coating under high vacuum conditions
高真空条件下 Si-COAT 570 高压绝缘子涂层测试
- 批准号:
538079-2019 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Engage Grants Program
REPAIR OF FEMTOSECOND LASER SYSTEM
飞秒激光系统的修复
- 批准号:
RTI-2020-00080 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Research Tools and Instruments
Nanofluidic system with electrochemical and flow mixing capabilities for in-liquid electron microscopy studies - Phase I
具有电化学和流动混合功能的纳流体系统,用于液体电子显微镜研究 - 第一阶段
- 批准号:
538556-2019 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Idea to Innovation
Ultra-stable liquid-nitrogen-free holder for high-resolution cryo-electron microscopy - Phase I
用于高分辨率冷冻电子显微镜的超稳定无液氮支架 - 第一阶段
- 批准号:
545135-2019 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Idea to Innovation
Atomically-resolved dynamics and ultrafast high-resolution imaging
原子分辨动力学和超快高分辨率成像
- 批准号:
1000230116-2014 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Canada Research Chairs
Femtosecond electron sources for atomically-resolved dynamics and ultrafast high-resolution imaging
用于原子分辨动力学和超快高分辨率成像的飞秒电子源
- 批准号:
RGPIN-2014-05564 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Muon--electron转换过程的实验研究
- 批准号:11335009
- 批准年份:2013
- 资助金额:360.0 万元
- 项目类别:重点项目
Potyvirus柱状内含体-胞间连丝连接装置的三维重构及病毒胞间运动研究
- 批准号:31070129
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
- 批准号:30970527
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
废水中难降解有机污染物的电子束辐照降解机理
- 批准号:50578090
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
铁磁性超导体的微观电子态和相图的理论研究
- 批准号:10574063
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
P1: Sources and Mechanisms of Sequential Activity
P1:顺序活动的来源和机制
- 批准号:
10705963 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
GEM: Sources of Electron Populations in the Plasma Sheet
GEM:等离子体片中电子群的来源
- 批准号:
2246912 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
ECOD: Large scale classification of predicted and experimental protein structures
ECOD:预测和实验蛋白质结构的大规模分类
- 批准号:
10659763 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
RGPIN-2018-06752 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Quantifying the Brain Metabolism Underlying Task-Based BOLD Imaging
量化基于任务的 BOLD 成像背后的大脑代谢
- 批准号:
10432379 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Observation of atomic charges in organic microcrystals by synchrotron and electron beam sources
通过同步加速器和电子束源观察有机微晶中的原子电荷
- 批准号:
22K14557 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantifying the Brain Metabolism Underlying Task-Based BOLD Imaging
量化基于任务的 BOLD 成像背后的大脑代谢
- 批准号:
10816746 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Iron biogeobatteries are sustainable electron sources and sinks in the environment
铁生物电池是环境中可持续的电子源和汇
- 批准号:
MR/V023918/1 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Fellowship
A Mid-Level 200kV Instrument for Single-Particle cryoEM
用于单粒子冷冻电镜的中级 200kV 仪器
- 批准号:
10436739 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Quantifying the Brain Metabolism Underlying Task-Based BOLD Imaging
量化基于任务的 BOLD 成像背后的大脑代谢
- 批准号:
10583545 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别: