Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
基本信息
- 批准号:RGPIN-2014-04530
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
If intense light irradiates solids, an exotic phase of matter called a Bose-Einstein condensate (BEC) is possible. By interacting strongly with materials, light couples with electrons to make 'half-light, half-electron' quasiparticles, termed exciton-polaritons, many of which may occupy the same quantum-mechanical state, so they all move as one, akin to a large ensemble of pairs of figure skaters, all performing in exquisite choreography when the spotlight is upon them. Individual particles lose their identity, acting cooperatively as a 'quantum liquid' over the entire solid when the laser shines on it. Such macroscopic spontaneous coherence (the collective quantum behaviour polaritons, much like the large number of figure skaters) of is at the origin of many important but poorly understood condensed-matter phenomena such as superfluidity. These states have only been observed in very specific solids called semiconductor quantum wells – built by atoms arranged in a crystal, in which electrons are confined to move in two dimensions, and at very low temperatures (~20 K, or -253 °C). I will address the following question: can we find such condensates at room temperature in solids made with molecules? This is a big question because it addresses the physics of these states in materials beyond 'simple' solids, built with organic molecules like those that surround us and are in us, in a temperature environment familiar to us. Understanding this fundamental behaviour will bring new breakthroughs in quantum mechanics by generalising the physics of formation and dissipation of this new state of matter. This may lead to new coherent light sources that consume less power than conventional lasers, and to devices that may be used in quantum computers. Molecules are configurationally 'soft and fluffy', resulting in structural disorder. Electronic interactions between molecules are therefore complex, which can be an important cause of coherence dissipation, potentially hindering condensation. Nonetheless, organic materials are ideal candidates for BEC because they absorb light very strongly, rendering the strength of the coupling between photons (light) and electrons well over an order of magnitude larger than in quantum wells, and can be stronger than energetic disorder in good optical devices. Furthermore, in organic semiconductors it is theoretically possible to form quantum condensates in these materials at room temperature, which is not generally possible with inorganic quantum wells with over an order of magnitude lower exciton binding energies. I will fabricate new devices based on plastics, which will permit the study of these fundamental physics with intricate detail because it will be possible to more easily incorporate molecular materials in them. I will study a range of materials that conduct electricity and may be used in optoelectronic devices, ranging from crystals composed of molecules to conducting plastics.I underline the potential for transformative impact of the proposed programme of work. We will use new fabrication protocols to make devices, and then study them with sophisticated experimental techniques producing short laser pulses (shorter than a millionth of a millionth of a second) to study polariton condensation processes in real time. The impact of my work will be to develop a rigorous framework to understand and control how light interacts with these materials, and real-life applications such as lasers can emerge in the long term. This grant will enable big-picture understanding of photophysics of plastic semiconductors, connecting concepts from classical polymer science, condensed-matter physics, and chemical physics.
如果强光照射固体,物质的奇异相称为玻色-爱因斯坦凝聚(BEC)是可能的。通过与材料的强烈相互作用,光与电子耦合,形成“半光半电子”的准粒子,称为激子-极化激元,其中许多可能占据相同的量子力学状态,因此它们都作为一个整体运动,类似于一个大型的花样滑冰运动员组合,当聚光灯照射在他们身上时,所有人都在进行精美的舞蹈表演。当激光照射到粒子上时,单个粒子失去了它们的身份,在整个固体上协同作用,就像一种“量子液体”。这种宏观自发的相干性(集体量子行为极化激元,很像大量的花样滑冰运动员)是许多重要但知之甚少的凝聚态现象的起源,比如超流。这些状态只在称为半导体量子威尔斯的非常特殊的固体中观察到-由排列在晶体中的原子构成,其中电子被限制在二维中移动,并且温度非常低(约20 K或-253 °C)。我将讨论以下问题:我们能在室温下在由分子组成的固体中找到这样的凝聚物吗?这是一个大问题,因为它解决了“简单”固体之外的材料中这些状态的物理学问题,这些材料是由我们周围和体内的有机分子在我们熟悉的温度环境中构建的。理解这种基本行为将通过概括这种新物质状态的形成和耗散的物理学来带来量子力学的新突破。这可能会导致新的相干光源消耗比传统激光器更少的功率,以及可能用于量子计算机的设备。分子在构型上是“柔软和蓬松的”,导致结构紊乱。因此,分子之间的电子相互作用是复杂的,这可能是相干耗散的重要原因,可能会阻碍凝聚。尽管如此,有机材料是BEC的理想候选者,因为它们非常强烈地吸收光,使得光子(光)和电子之间的耦合强度比量子威尔斯中的耦合强度大一个数量级以上,并且可以比良好光学器件中的能量无序更强。此外,在有机半导体中,理论上可以在室温下在这些材料中形成量子凝聚物,这对于具有超过一个数量级的较低激子结合能的无机量子威尔斯通常是不可能的。我将制造基于塑料的新设备,这将允许研究这些具有复杂细节的基础物理学,因为它将有可能更容易地将分子材料纳入其中。我将研究从分子组成的晶体到导电塑料等一系列导电和可用于光电子器件的材料,并强调拟议工作方案具有变革性影响的潜力。我们将使用新的制造协议来制造设备,然后用产生短激光脉冲(短于百万分之一秒)的复杂实验技术来研究它们,以真实的时间研究极化激元凝聚过程。我的工作的影响将是开发一个严格的框架来理解和控制光如何与这些材料相互作用,从长远来看,激光等现实应用可能会出现。该补助金将使塑料半导体物理学的宏观理解,连接经典聚合物科学,凝聚态物理学和化学物理学的概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silva, Carlos其他文献
Entropy Stress and Scaling of Vital Organs over Life Span Based on Allometric Laws
- DOI:
10.3390/e14122550 - 发表时间:
2012-12-01 - 期刊:
- 影响因子:2.7
- 作者:
Annamalai, Kalyan;Silva, Carlos - 通讯作者:
Silva, Carlos
Charge percolation pathways in polymer blend photovoltaic diodes with sub-mesoscopic two-phase microstructures
具有亚介观两相微结构的聚合物共混光伏二极管中的电荷渗流路径
- DOI:
10.1016/j.cplett.2013.03.076 - 发表时间:
2013-05 - 期刊:
- 影响因子:2.8
- 作者:
Dou, Fei;Silva, Carlos;Zhang, Xinping - 通讯作者:
Zhang, Xinping
Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions
- DOI:
10.1038/ncomms4119 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:16.6
- 作者:
Bittner, Eric R.;Silva, Carlos - 通讯作者:
Silva, Carlos
Repeatability of Brain Activity as Measured by a 32-Channel EEG System during Resistance Exercise in Healthy Young Adults.
- DOI:
10.3390/ijerph20031992 - 发表时间:
2023-01-21 - 期刊:
- 影响因子:0
- 作者:
Domingos, Christophe;Maroco, Joao Luis;Miranda, Marco;Silva, Carlos;Melo, Xavier;Borrego, Carla - 通讯作者:
Borrego, Carla
Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene
- DOI:
10.1103/physrevlett.98.206406 - 发表时间:
2007-05-18 - 期刊:
- 影响因子:8.6
- 作者:
Clark, Jenny;Silva, Carlos;Spano, Frank C. - 通讯作者:
Spano, Frank C.
Silva, Carlos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silva, Carlos', 18)}}的其他基金
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
- 批准号:
RGPIN-2014-04530 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
- 批准号:
RGPIN-2014-04530 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
- 批准号:
RGPIN-2014-04530 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Organic Semiconductor Materials
有机半导体材料
- 批准号:
1000215863-2009 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
- 批准号:
RGPIN-2014-04530 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Organic Semiconductor Materials
有机半导体材料
- 批准号:
1000215863-2009 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Unravelling electronic dynamics in supramolecular semiconductors from femtoseconds to milliseconds
揭示超分子半导体从飞秒到毫秒的电子动力学
- 批准号:
311409-2008 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Organic Semiconductor Materials
有机半导体材料
- 批准号:
1000215863-2009 - 财政年份:2012
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Critical repair of an ultrafast laser system for research on semiconductor materials
用于半导体材料研究的超快激光系统的关键修复
- 批准号:
439542-2013 - 财政年份:2012
- 资助金额:
$ 3.06万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Unravelling electronic dynamics in supramolecular semiconductors from femtoseconds to milliseconds
揭示超分子半导体从飞秒到毫秒的电子动力学
- 批准号:
311409-2008 - 财政年份:2012
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
半导体中激子的量子非线性光学的研究
- 批准号:10474025
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin Optoelectronic Materials
神经薄片:利用原子薄光电材料对神经活动进行直接电压成像
- 批准号:
10401044 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin Optoelectronic Materials
神经薄片:利用原子薄光电材料对神经活动进行直接电压成像
- 批准号:
10598520 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Measuring Nanoscale Exciton Motion & Annihilation in Single Molecules with Photon Statistics
测量纳米级激子运动
- 批准号:
EP/V004921/1 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Research Grant
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
- 批准号:
RGPIN-2014-04530 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Exciton-phonon-photon dynamics and coherent coupling of quantum dots embedded in photonic cavities
光子腔中嵌入量子点的激子-声子-光子动力学和相干耦合
- 批准号:
2105422 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Studentship
Anisotropic triplet exciton diffusion inside structurally controlled solid-state materials with photon upconversion
具有光子上转换的结构控制固态材料内的各向异性三线态激子扩散
- 批准号:
17K05852 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiconductor Quantum Photonics: Control of Spin, Exciton and Photon Interactions by Nano-Photonic Design
半导体量子光子学:通过纳米光子设计控制自旋、激子和光子相互作用
- 批准号:
EP/N031776/1 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Research Grant
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
- 批准号:
RGPIN-2014-04530 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Tailoring exciton-photon interactions in organic semiconductor microcavities: From resonance-controlled photophysics to spontaneous coherence
定制有机半导体微腔中的激子-光子相互作用:从共振控制光物理到自发相干
- 批准号:
RGPIN-2014-04530 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Exciton-exciton annihilation and photon correlation in suspended carbon nanotubes
悬浮碳纳米管中的激子-激子湮灭和光子关联
- 批准号:
26610080 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research