Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
基本信息
- 批准号:312388-2013
- 负责人:
- 金额:$ 3.21万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
What could be possible if we let a machine learn continuously over its lifetime? Objectives: The goal of this work is to develop lifelong learning algorithms with application to dialog management. At a theoretical level, this research will investigate and advance the principles by which a machine can gradually learn over a long period of time, discover new concepts and generalize concepts to new situations. This will be put in practice by developing open ended dialog systems for natural language interfaces. Personalization of such interfaces at the language level and adapting to the habits and preferences of the user will benefit tremendously from continuous learning.Methods: Since continuous learning is a sequential process, the techniques developed will be in the framework of reinforcement learning. Particular emphasis will be put on the development of non-parametric techniques that do not make a closed world assumption by allowing new concepts (e.g., new words, expressions, habits, goals) to be discovered and represented on the fly. Hierarchical representations will be employed to organize and reason about the concepts from low level language units to high level user intentions. The techniques will be deployed in speech and text interfaces for smart phone applications.Novelty and significance: Lifelong machine learning is a new research direction that remains vastly unexplored. This research will develop the theory and practice of this new paradigm, which will enable a new breed of intelligent systems. It will contribute to the next generation of natural user interfaces based on speech for smart phones, video-gaming and hands-free car consoles.
如果我们让机器在其生命周期中不断学习,会有什么可能呢?目标:这项工作的目标是开发终身学习算法,应用于对话管理。在理论层面上,这项研究将研究和推进机器可以在很长一段时间内逐渐学习,发现新概念并将概念推广到新情况的原则。这将通过为自然语言界面开发开放式对话系统来实现。个性化的界面在语言水平和适应的习惯和喜好的用户将受益匪浅,从不断learning.Methods:由于不断学习是一个连续的过程中,开发的技术将在强化学习的框架。将特别强调非参数技术的发展,这些技术通过允许新概念(例如,新的单词、表达、习惯、目标)被发现并在飞行中表现出来。层次表示将被用来组织和推理从低层次语言单元到高层次用户意图的概念。这些技术将被部署在智能手机应用程序的语音和文本界面中。新奇和重要性:终身机器学习是一个新的研究方向,仍然有很大的未探索。这项研究将发展这种新范式的理论和实践,这将使一个新的智能系统。它将为下一代基于语音的自然用户界面做出贡献,用于智能手机、视频游戏和免提汽车控制台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Poupart, Pascal其他文献
Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks
前馈和循环和积网络的在线结构学习
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kalra, Agastya;Rashwan, Abdullah;Hsu, Wei-Shou;Poupart, Pascal;Doshi, Prashant;Trimponias, Georgios - 通讯作者:
Trimponias, Georgios
Measuring Life Space in Older Adults with Mild-to-Moderate Alzheimer's Disease Using Mobile Phone GPS
- DOI:
10.1159/000355669 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:3.5
- 作者:
Tung, James Yungjen;Rose, Rhiannon Victoria;Poupart, Pascal - 通讯作者:
Poupart, Pascal
Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process
- DOI:
10.1016/j.cviu.2009.06.008 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:4.5
- 作者:
Hoey, Jesse;Poupart, Pascal;Mihailidis, Alex - 通讯作者:
Mihailidis, Alex
Poupart, Pascal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Poupart, Pascal', 18)}}的其他基金
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2022
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2020
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Reinforcement Learning for Sports Analytics
体育分析的强化学习
- 批准号:
521357-2018 - 财政年份:2020
- 资助金额:
$ 3.21万 - 项目类别:
Strategic Projects - Group
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Reinforcement Learning for Sports Analytics
体育分析的强化学习
- 批准号:
521357-2018 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Strategic Projects - Group
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2018
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2016
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2015
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2014
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Standard Grant