Reinforcement Learning for Sports Analytics
体育分析的强化学习
基本信息
- 批准号:521357-2018
- 负责人:
- 金额:$ 14.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our project develops novel machine learning algorithms for interpreting complex, multi-agent scenarios. We will advance the state of the art in deep reinforcement learning methods to enable analysis of continuous-flow input data. The collaboration with our industrial partner will tackle open problems in deep reinforcement learning that can result in richer capabilities in sports analytics for ice hockey and other continuous-flow sports such as basketball and soccer. Deep reinforcement learning, is a breakthrough technology with prominent successes in games such as Go (AlphaGo) and Chess (AlphaZero). This project will push deep reinforcement learning further into the physical world, with multi-person, complex scenarios arising from real-world noisy data sources. We will develop fundamental algorithmic advances and apply them to tasks including: - player evaluation - event predictions (match outcomes, next action, expected scores) - recognizing types of players, teams, play sequences, and tactics - identifying characteristic strengths and weaknesses of players and teams. Our partner is the Montreal-based company SPORTLOGiQ, which uses advanced computer vision to extract information about events from video of sports matches. Their information is more detailed than that provided by any other company or organization. The market for sports analytics is growing rapidly, with major international companies receiving millions of investment dollars. This project will build significant Canadian capacity in sports analytics, support academic research, advance commercialization in the sports industry, and train highly qualified personnel. Canada has achieved a position of leadership in reinforcement learning, through excellent researchers who have attracted companies such as Google's DeepMind to set up Canadian labs. The proposed research will contribute to Canada's reinforcement learning ecosystem by establishing novel algorithmic contributions for a major application area with great commercial potential.
我们的项目开发了新的机器学习算法,用于解释复杂的多智能体场景。 我们将推进深度强化学习方法的最新技术,以实现对连续流输入数据的分析。 与我们的工业合作伙伴的合作将解决深度强化学习中的开放性问题,这些问题可以为冰球和其他连续流运动(如篮球和足球)提供更丰富的体育分析能力。 深度强化学习是一项突破性的技术,在围棋(AlphaGo)和国际象棋(AlphaZero)等游戏中取得了显著的成功。该项目将把深度强化学习进一步推向物理世界,包括来自真实世界噪声数据源的多人复杂场景。 我们将开发基本的算法进步,并将其应用到任务中,包括:-球员评估-事件预测(比赛结果,下一步行动,预期得分)-识别球员,球队,比赛序列和战术的类型-识别球员和球队的特征优势和弱点。我们的合作伙伴是总部位于伦敦的SPORTLOGiQ公司,该公司使用先进的计算机视觉从体育比赛视频中提取有关事件的信息。他们的信息比任何其他公司或组织提供的信息都要详细。体育分析市场正在迅速增长,主要的国际公司获得了数百万美元的投资。该项目将建立加拿大在体育分析方面的重要能力,支持学术研究,促进体育产业的商业化,并培养高素质的人才。加拿大在强化学习方面取得了领先地位,通过优秀的研究人员吸引了谷歌的DeepMind等公司建立加拿大实验室。拟议的研究将通过为具有巨大商业潜力的主要应用领域建立新的算法贡献,为加拿大的强化学习生态系统做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Poupart, Pascal其他文献
Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks
前馈和循环和积网络的在线结构学习
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kalra, Agastya;Rashwan, Abdullah;Hsu, Wei-Shou;Poupart, Pascal;Doshi, Prashant;Trimponias, Georgios - 通讯作者:
Trimponias, Georgios
Measuring Life Space in Older Adults with Mild-to-Moderate Alzheimer's Disease Using Mobile Phone GPS
- DOI:
10.1159/000355669 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:3.5
- 作者:
Tung, James Yungjen;Rose, Rhiannon Victoria;Poupart, Pascal - 通讯作者:
Poupart, Pascal
Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process
- DOI:
10.1016/j.cviu.2009.06.008 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:4.5
- 作者:
Hoey, Jesse;Poupart, Pascal;Mihailidis, Alex - 通讯作者:
Mihailidis, Alex
Poupart, Pascal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Poupart, Pascal', 18)}}的其他基金
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2022
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2021
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2020
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Reinforcement Learning for Sports Analytics
体育分析的强化学习
- 批准号:
521357-2018 - 财政年份:2020
- 资助金额:
$ 14.53万 - 项目类别:
Strategic Projects - Group
Robust and Sample Efficient Reinforcement Learning
鲁棒且样本高效的强化学习
- 批准号:
RGPIN-2019-05014 - 财政年份:2019
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2018
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2017
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2016
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2015
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
Lifelong Machine Learning and Sequential Decision Making for Natural Language Interfaces
自然语言界面的终身机器学习和顺序决策
- 批准号:
312388-2013 - 财政年份:2014
- 资助金额:
$ 14.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Machine learning applications to sports event prediction and detection of match-fixing in sports betting markets
机器学习在体育赛事预测和体育博彩市场假球检测中的应用
- 批准号:
2894301 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Studentship
Machine learning applications to sports event prediction and detection of match-fixing in sports betting markets
机器学习在体育赛事预测和体育博彩市场假球检测中的应用
- 批准号:
2894958 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Studentship
OSCAR CV: Accelerating the adoption of Machine Learning & Computer Vision in the Sports turf industry
OSCAR CV:加速机器学习的采用
- 批准号:
10065829 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Collaborative R&D
Deep Learning Techniques for Closing the Data Gap in Sports Analytics
用于缩小体育分析数据差距的深度学习技术
- 批准号:
547697-2020 - 财政年份:2022
- 资助金额:
$ 14.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effect of practice including various neuromodulations on motor learning of sports skills
包括各种神经调节在内的练习对运动技能运动学习的影响
- 批准号:
22K11504 - 财政年份:2022
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep Learning Techniques for Closing the Data Gap in Sports Analytics
用于缩小体育分析数据差距的深度学习技术
- 批准号:
547697-2020 - 财政年份:2021
- 资助金额:
$ 14.53万 - 项目类别:
Postgraduate Scholarships - Doctoral
Building an Inclusive Auditory VR Environment of Sports and Applying it to Cooperative Learning for Visually Impaired and Sighted People
构建包容性的体育听觉 VR 环境并将其应用于视障和视力正常人群的合作学习
- 批准号:
21K18485 - 财政年份:2021
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Designing for Learning at the Intersection of Sports, Analytics and Physical Computing
职业:体育、分析和物理计算交叉点的学习设计
- 批准号:
2047693 - 财政年份:2021
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
Multimodal Machine Learning for Motion Analysis in Sports Science
用于运动科学运动分析的多模态机器学习
- 批准号:
10011398 - 财政年份:2021
- 资助金额:
$ 14.53万 - 项目类别:
Feasibility Studies
Deep Learning-based Real-time 3D Human Pose Forecasting and its Application on Sports
基于深度学习的实时3D人体姿势预测及其在体育运动中的应用
- 批准号:
20J20197 - 财政年份:2020
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




