Finite Geometries and their Applications
有限几何及其应用
基本信息
- 批准号:8726-2013
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My aim is to continue an established program of research in discrete and applied mathematics, specializing in finite geometries and designs with applications to communication theory. Modern technology deals with the storage and transmission of digital information.The groundwork was laid in the nineteen forties by Claude E Shannon, a mathematician and engineer. In particular he showed how to digitize [band-limited] analog signals in a practical way. Many practical problems in the communications area remain open. They give rise to basic mathematical problems which still remain unsolved despite the efforts of notable mathematicians and Fields medalists. I continue to work on these problems, such as the following:1.the existence problem for finite projective planes and block designs.2.the longest linear MDS codes problem I have contributed some results [e.g. for the order 10 case for planes] towards a partial solution of 1 and I have co-authored a major result for problem 2. For 1, the main tool is a collection of results in blocking sets which I have developed. The work in 2, published in the Inventiones, was inspired by Segre's brilliant use of the Hasse-Weil theorem for curves. The main practical examples of these MDS codes are the widely-used and ubiquitous Reed-Solomon codes which first came to prominence for error control with the invention of the compact disc player. The broad agenda of my ongoing research program continues to be my work in finite geometries and designs and related areas of discrete mathematics such as graph theory, but always with an eye to applications.I have written two patent applications in the communications area in the past and am working on two others.I am eager to vigorously pursue this ongoing research programme.
我的目标是继续在离散数学和应用数学方面的既定研究计划,专门研究有限几何和设计及其在通信理论中的应用。现代技术涉及数字信息的存储和传输。20世纪40年代,数学家和工程师克劳德·E·香农奠定了这一基础。特别是,他展示了如何以一种实用的方式将[带限]模拟信号数字化。通信领域的许多实际问题仍然悬而未决。它们产生了基本的数学问题,尽管著名的数学家和菲尔兹奖牌获得者做出了努力,这些问题仍然没有得到解决。我继续研究这些问题,例如:1.有限射影平面和区块设计的存在性问题。2.最长线性MDS码问题我已经为问题1的部分解贡献了一些结果[例如,对于平面的阶数为10的情况],并且我与人合著了问题2的一个主要结果。对于1,主要工具是我开发的块集合中的结果的集合。发表在《发明》杂志上的2中的工作灵感来自于Segre对曲线的Hasse-Weil定理的巧妙运用。这些MDS码的主要实际例子是广泛使用且无处不在的里德-所罗门码,它随着光盘播放器的发明而首次因差错控制而变得突出。我正在进行的研究计划的主要议程仍然是我在有限几何和设计以及离散数学(如图论)的相关领域的工作,但总是着眼于应用。我过去曾在通信领域撰写过两项专利申请,目前正在进行另外两项申请。我渴望积极推进这一正在进行的研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruen, Aiden其他文献
Bruen, Aiden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruen, Aiden', 18)}}的其他基金
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics in finite geometries, error-correction, information theory and bioinformatics
有限几何、误差校正、信息论和生物信息学主题
- 批准号:
8726-2004 - 财政年份:2008
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics in finite geometries, error-correction, information theory and bioinformatics
有限几何、误差校正、信息论和生物信息学主题
- 批准号:
8726-2004 - 财政年份:2007
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics in finite geometries, error-correction, information theory and bioinformatics
有限几何、误差校正、信息论和生物信息学主题
- 批准号:
8726-2004 - 财政年份:2006
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics in finite geometries, error-correction, information theory and bioinformatics
有限几何、误差校正、信息论和生物信息学主题
- 批准号:
8726-2004 - 财政年份:2005
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics in finite geometries, error-correction, information theory and bioinformatics
有限几何、误差校正、信息论和生物信息学主题
- 批准号:
8726-2004 - 财政年份:2004
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Topics in finite geometries, combinatorics and algebraic coding theory
有限几何、组合数学和代数编码理论主题
- 批准号:
8726-1999 - 财政年份:2002
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Morphing Waverider Geometries at High-Speed and their Control
高速变形乘波体几何形状及其控制
- 批准号:
2749386 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Studentship
Efficient synthesis of thermal-stimulus responsive solid-state light-emitting molecules with various molecular geometries and evaluation of their structure-property relationship
具有不同分子几何形状的热刺激响应固态发光分子的高效合成及其构效关系评估
- 批准号:
21K05212 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effective contaminant source geometries and their implications for final plume extension - ESTIMATE
有效的污染物源几何形状及其对最终羽流延伸的影响 - 估计
- 批准号:
383453752 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Research Grants
Random Walks and Diffusions and Their Geometries
随机游走和扩散及其几何
- 批准号:
1707589 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras of transvers geometries and their hopf cyclic cohomology
横向几何的 Hopf 代数及其 hopf 循环上同调
- 批准号:
355531-2008 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras of transvers geometries and their hopf cyclic cohomology
横向几何的 Hopf 代数及其 hopf 循环上同调
- 批准号:
355531-2008 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual