Random Walks and Diffusions and Their Geometries
随机游走和扩散及其几何
基本信息
- 批准号:1707589
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Randomness plays a role in many aspects of science and human activities. A familiar yet complex and mathematically interesting example is card shuffling, which serves as a model for many important phenomena involving the idea of mixing. More generally, randomness is used in modeling a wide range of systems, from polymers and DNA to image restoration and recognition, communication and social networks, and the behavior of financial markets. Random processes are also used as important tools for efficient computations and simulation. In all these applications, strong structural constraints associated with the complex combinatorial or geometric structure underlying the problem determine the behavior of the process. This research project is concerned with the fundamental properties of such stochastic processes and their relationship to global structures.The project focusses on Markov processes that are defined in terms of a related geometric or algebraic structure. The long-term and global properties of these processes are determined by and often reflect the global structure of the underlying space. The project involves questions at the interface between analysis, geometry, and probability with a major role played by groups and their actions. Partial differential equations and potential theory, i.e., the study of harmonic functions and, more generally, of solutions of the heat equation, are also at the center of many of these considerations. Brownian motion on a Riemannian manifold and random walks on Cayley graphs of finitely generated groups provide key examples.
随机性在科学和人类活动的许多方面都发挥着作用。一个熟悉但复杂且数学上有趣的例子是洗牌,它是许多涉及混合思想的重要现象的模型。更一般地说,随机性被用于对各种系统进行建模,从聚合物和DNA到图像恢复和识别,通信和社交网络以及金融市场的行为。随机过程也被用作有效计算和模拟的重要工具。在所有这些应用中,与问题的复杂组合或几何结构相关的强结构约束决定了过程的行为。本研究计画主要探讨随机过程的基本性质及其与整体结构的关系,并以相关几何或代数结构定义的马尔可夫过程为研究对象。这些过程的长期和全局性质由底层空间的全局结构决定,并往往反映了底层空间的全局结构。该项目涉及分析,几何和概率之间的接口问题,其中小组及其行动发挥了重要作用。偏微分方程和势能理论,即,调和函数的研究,以及更一般地,热方程的解的研究,也是许多这些考虑的中心。黎曼流形上的布朗运动和Cayley图上的随机游动都提供了关键的例子。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Positive-Homogeneous Operators, Heat Kernel Estimates and the Legendre-Fenchel Transform
正齐次算子、热核估计和勒让德-芬切尔变换
- DOI:10.1007/978-3-319-59671-6
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Randles, Evan;Saloff-Coste, Laurent
- 通讯作者:Saloff-Coste, Laurent
Gambler’s ruin estimates on finite inner uniform domains
赌徒对有限内均匀域的破产估计
- DOI:10.1214/20-aap1607
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Diaconis, Persi;Houston-Edwards, Kelsey;Saloff-Coste, Laurent
- 通讯作者:Saloff-Coste, Laurent
Strong hypercontractivity and logarithmic Sobolev inequalities on stratified complex Lie groups
- DOI:10.1090/tran/7200
- 发表时间:2015-10
- 期刊:
- 影响因子:0
- 作者:Nathaniel Eldredge;L. Gross;L. Saloff‐Coste
- 通讯作者:Nathaniel Eldredge;L. Gross;L. Saloff‐Coste
Davies’ method for heat-kernel estimates: An extension to the semi-elliptic setting
用于热核估计的 Davies 方法:半椭圆设置的扩展
- DOI:10.1090/tran/8050
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Randles, Evan;Saloff-Coste, Laurent
- 通讯作者:Saloff-Coste, Laurent
Isoperimetric profiles and random walks on some groups defined by piecewise actions
由分段动作定义的某些组上的等周剖面和随机游走
- DOI:10.1007/s00440-021-01067-z
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Saloff-Coste, Laurent;Zheng, Tianyi
- 通讯作者:Zheng, Tianyi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laurent Saloff-Coste其他文献
Bounds for Kac's Master Equation
- DOI:
10.1007/s002200050036 - 发表时间:
2000-02-01 - 期刊:
- 影响因子:2.600
- 作者:
Persi Diaconis;Laurent Saloff-Coste - 通讯作者:
Laurent Saloff-Coste
Inequalities forp-superharmonic functions on networks
- DOI:
10.1007/bf02925256 - 发表时间:
1995-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Laurent Saloff-Coste - 通讯作者:
Laurent Saloff-Coste
Parabolic Harnack inequality for divergence form second order differential operators
- DOI:
10.1007/978-94-011-0085-4_9 - 发表时间:
1995-08 - 期刊:
- 影响因子:1.1
- 作者:
Laurent Saloff-Coste - 通讯作者:
Laurent Saloff-Coste
Some Inequalities for Superharmonic Functions on Graphs
- DOI:
10.1023/a:1008648421123 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:0.800
- 作者:
Laurent Saloff-Coste - 通讯作者:
Laurent Saloff-Coste
On the Convolution Powers of Complex Functions on $$\mathbb {Z}$$
- DOI:
10.1007/s00041-015-9386-1 - 发表时间:
2015-03-07 - 期刊:
- 影响因子:1.200
- 作者:
Evan Randles;Laurent Saloff-Coste - 通讯作者:
Laurent Saloff-Coste
Laurent Saloff-Coste的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laurent Saloff-Coste', 18)}}的其他基金
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Heat Kernels and Geometries in Discrete and Continuous Settings
离散和连续设置中的热核和几何形状
- 批准号:
2054593 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Random walks, diffusions, semigroups, and associated geometries
随机游走、扩散、半群和相关几何
- 批准号:
1404435 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Asymptotically Efficient and Efficiently Computable Bayesian Estimation
渐近有效且高效可计算的贝叶斯估计
- 批准号:
1406599 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
US participant support for the Instut Henri Poincare quarter program "Random Walks and the Asymptotic Geometry of Groups"
美国参与者支持 Instut Henri Poincare 季度项目“随机游走和群的渐近几何”
- 批准号:
1344959 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Travel Grants for US Participants, SPA Berlin 2009 33rd Conference on Stochastic Processes and Their Applications
为美国参与者提供旅费资助,2009 年柏林 SPA 第 33 届随机过程及其应用会议
- 批准号:
0855857 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EMSW21-RTG: Interdisciplinary Training in the Applications of Probability
EMSW21-RTG:概率应用的跨学科培训
- 批准号:
0739164 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Markov Processes in Geometric Environments
几何环境中的马尔可夫过程
- 批准号:
0603886 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Analysis and Geometry of Markov Chains Diffusion Processes
马尔可夫链扩散过程的分析与几何
- 批准号:
0102126 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
- 批准号:
EP/W022923/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Parallelization and robustness of random walks: Approaches from "short" random walks analysis
随机游走的并行化和鲁棒性:“短”随机游走分析的方法
- 批准号:
23K16840 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RUI: Boundary and entropy of random walks on groups
RUI:群体随机游走的边界和熵
- 批准号:
2246727 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Limit theorem for quantum walks interacting with environment
量子行走与环境相互作用的极限定理
- 批准号:
23K03229 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
- 批准号:
23K03224 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)