Geometric nonlinear partial differential equations
几何非线性偏微分方程
基本信息
- 批准号:46732-2010
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential geometry and differential equations are involved in many practical problems and often highly theoretical problems in Physics and Engineering and other areas. Most of these problems are guided by nonlinear differential equations. For example, the string theory in theoretical physics, where differential geometry and differential equations play important roles. Various ideas of analysis are used in the process of finding solutions of differential equations with certain geometric properties in general and in particular those that are nonlinear. The main thrusts in differential geometry are the search for ``optimal" geometric structures, such as diffeomorphisms, metrics, etc., and the study of the geometric and topological implications of their existence. These ``extremal" geometric objects can be viewed as solutions to natural nonlinear partial differential equations, and they encode rich information linking geometry, topology and analysis. Curvature tensors yield important examples, e.g. Ricci tensor and Weingarten map. The study of these curvature tensors in general carried out through systems of parabolic and elliptic nonlinear equations. The examples including the Monge-Amp\`ere equations, Gauss curvature flow, and the Ricci flow. We continue to study the fully nonlinear partial differential equations related to problems in differential geometry.A common thread linking our program is the analysis of the geometric fully nonlinear equations and their relationship with geometric quantities . The fundamental existence and regularity questions in the category of analysis should be adapted to cope with the emphasis on {\it geometric} solutions, which are often forced upon us by the geometric nature of the problems like the monotonicity of specified geometric functionals. Our objective is to develop various analytic tools to establish a priori estimates for these equations, explore the structures of geometric solutions, and derive geometric consequences.
微分几何和微分方程涉及到物理和工程等领域的许多实际问题,而且往往是理论性很强的问题。这些问题大多是由非线性微分方程引导的。例如,理论物理学中的弦理论,其中微分几何和微分方程扮演着重要角色。各种各样的分析思想被用于寻找具有某些几何性质的微分方程的解的过程中,特别是那些非线性的。微分几何的主要目标是寻找"最优”几何结构,如同构、度量等,以及研究它们存在的几何和拓扑含义。这些“极值”几何对象可以被看作是自然非线性偏微分方程的解,它们编码了丰富的信息,将几何、拓扑和分析联系起来。曲率张量给出了重要的例子,例如Ricci张量和Weingarten映射。这些曲率张量的研究一般通过抛物和椭圆非线性方程组进行。例子包括Monge-Schwarzere方程、Gauss曲率流和Ricci流。我们继续研究与微分几何问题相关的完全非线性偏微分方程,一个共同的主线是分析几何完全非线性方程及其与几何量的关系。分析范畴中的基本存在性和正则性问题应该适应于强调几何解,这通常是由问题的几何性质(如指定几何泛函的单调性)强加给我们的。我们的目标是开发各种分析工具来建立这些方程的先验估计,探索几何解的结构,并得出几何后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guan, Pengfei其他文献
A general rule for transition metals doping on magnetic properties of Fe-based metallic glasses
- DOI:
10.1016/j.jallcom.2019.153062 - 发表时间:
2020-04-05 - 期刊:
- 影响因子:6.2
- 作者:
Chen, Hui;Zhou, Shaoxiong;Guan, Pengfei - 通讯作者:
Guan, Pengfei
Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses
- DOI:
10.1103/physrevlett.104.205701 - 发表时间:
2010-05-21 - 期刊:
- 影响因子:8.6
- 作者:
Guan, Pengfei;Chen, Mingwei;Egami, Takeshi - 通讯作者:
Egami, Takeshi
In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit.
原位原子尺度观测超出弹性极限的连续可逆晶格变形
- DOI:
10.1038/ncomms3413 - 发表时间:
2013 - 期刊:
- 影响因子:16.6
- 作者:
Wang, Lihua;Liu, Pan;Guan, Pengfei;Yang, Mingjie;Sun, Jialin;Cheng, Yongqiang;Hirata, Akihiko;Zhang, Ze;Ma, Evan;Chen, Mingwei;Han, Xiaodong - 通讯作者:
Han, Xiaodong
High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature.
二维SiTe在高温下具有高n型和p型热电性能
- DOI:
10.1039/c8ra02270d - 发表时间:
2018-06-08 - 期刊:
- 影响因子:3.9
- 作者:
Wang, Qian;Quhe, Ruge;Guan, Zixuan;Wu, Liyuan;Bi, Jingyun;Guan, Pengfei;Lei, Ming;Lu, Pengfei - 通讯作者:
Lu, Pengfei
Injectable Intrinsic Photothermal Hydrogel Bioadhesive with On-Demand Removability for Wound Closure and MRSA-Infected Wound Healing
- DOI:
10.1002/adhm.202203306 - 发表时间:
2023-02-05 - 期刊:
- 影响因子:10
- 作者:
Kang, Xinchang;Guan, Pengfei;Zhou, Lei - 通讯作者:
Zhou, Lei
Guan, Pengfei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guan, Pengfei', 18)}}的其他基金
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Geometric nonlinear partial differential equations
几何非线性偏微分方程
- 批准号:
46732-2010 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Geometric nonlinear partial differential equations
几何非线性偏微分方程
- 批准号:
46732-2010 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
- 批准号:11105178
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非线性发展方程及其吸引子
- 批准号:10871040
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
大型机械结构非线性特性的实验辨识和物理仿真
- 批准号:50405043
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
半导体中激子的量子非线性光学的研究
- 批准号:10474025
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
- 批准号:70471078
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
- 批准号:
2054184 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fully Nonlinear Geometric Partial Differential Equations
全非线性几何偏微分方程
- 批准号:
1809582 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Rigorous computations of solutions of nonlinear geometric partial differential equations
非线性几何偏微分方程解的严格计算
- 批准号:
526393-2018 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
University Undergraduate Student Research Awards
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
1811034 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Geometric Measure Theory, Image Processing, and Nonlinear Partial Differential Equations
几何测度理论、图像处理和非线性偏微分方程
- 批准号:
1813695 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual