Distribution of multiplicative functions and other topics in analytic number theory

乘法函数的分布和解析数论中的其他主题

基本信息

  • 批准号:
    435272-2013
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Multiplication is one of the main arithmetic operations. Understanding fine properties of this simple operation leads to surprisingly deep questions. For example, the prime numbers are integers (whole numbers) that cannot be written as product of two other, strictly smaller integers. So 2, 3, 5, 7, 11, ... are prime numbers. These special integers are the 'building blocks' of multiplication, since any integer can be written as the product of prime numbers. Understanding the distribution of prime numbers among the set of all integers, as well as among other special subsets of the integers, is one of the most sought questions in mathematics. A practical way of packaging many questions concerning the prime numbers and, more generally, multiplication, is by using multiplicative functions. These are functions that respect the multiplicative structure of the integers. For example, 6 = 2 x 3, so if f is a multiplicative function and we input 6, 2 and 3 to it, the outputs f(6), f(2) and f(3) will have to obey the same multiplicative law: f(6) = f(2) x f(3). Often, inputing different integers to a multiplicative function can produce outputs that vary unpredictably. But if we average these outputs over many inputs, then the irregularities are smoothened out and we can start asking various questions. Perhaps the single most important question is how big this mean value is. This problem becomes of particular interest and difficulty when our function does not assume only positive or only negative values but, instead, it jumps back and forth between positive and negative values. How do we know then if these values of opposite signs cancel each other? Understanding questions of this flavour is a major part of my research. Prime numbers are so fundamental that it is possible to find them in front of you in the most surprising places. Elliptic curves are neither curves nor elliptical. Rather, they are donut-like surfaces which possess several remarkable properties. In particular, it is possible to define an operation on their points, much like we define multiplication on the integers. Studying what symmetries this operation can give rise to, led us naturally to questions about the distribution of prime numbers inside an arithmetic progression (e.g. in 4,7,10,...)
乘法是算术运算中的主要运算之一。理解这个简单操作的精细性质会导致令人惊讶的深刻问题。例如,质数是整数(整数),不能写成两个其他严格较小的整数的乘积。所以2,3,5,7,11,...都是质数这些特殊的整数是乘法的“积木”,因为任何整数都可以写成素数的乘积。了解素数在所有整数的集合中的分布,以及在整数的其他特殊子集中的分布,是数学中最受关注的问题之一。一个实用的方法来包装许多问题有关的素数,更一般地说,乘法,是通过使用乘法函数。这些函数是关于整数的乘法结构的。例如,6 = 2 x 3,所以如果f是一个乘法函数,我们向它输入6,2和3,输出f(6),f(2)和f(3)必须遵守相同的乘法定律:f(6)= f(2)x f(3)。通常,向乘法函数输入不同的整数会产生不可预测的输出。但是,如果我们将这些输出平均到许多输入上,那么不规则性就会被平滑,我们可以开始提出各种问题。也许最重要的一个问题是这个平均值有多大。这个问题变得特别有趣和困难时,我们的函数不承担只有积极的或只有消极的价值,而是,它之间来回跳跃的积极和消极的价值。那么,我们如何知道这些相反符号的值是否相互抵消呢?理解这种味道的问题是我研究的主要部分。素数是如此的基本,以至于有可能在你面前最令人惊讶的地方找到它们。椭圆曲线既不是曲线也不是椭圆。相反,它们是具有几个显著特性的甜甜圈状表面。特别是,可以在它们的点上定义一个操作,就像我们在整数上定义乘法一样。研究这种运算可以产生什么样的对称性,自然地使我们想到了关于算术级数中素数分布的问题(例如,在4,7,10中,...)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Koukoulopoulos, Dimitrios其他文献

Koukoulopoulos, Dimitrios的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Koukoulopoulos, Dimitrios', 18)}}的其他基金

Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
  • 批准号:
    RGPIN-2018-05699
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
  • 批准号:
    RGPIN-2018-05699
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
  • 批准号:
    RGPIN-2018-05699
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
  • 批准号:
    RGPIN-2018-05699
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
  • 批准号:
    RGPIN-2018-05699
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution of multiplicative functions and other topics in analytic number theory
乘法函数的分布和解析数论中的其他主题
  • 批准号:
    435272-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution of multiplicative functions and other topics in analytic number theory
乘法函数的分布和解析数论中的其他主题
  • 批准号:
    435272-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution of multiplicative functions and other topics in analytic number theory
乘法函数的分布和解析数论中的其他主题
  • 批准号:
    435272-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution of multiplicative functions and other topics in analytic number theory
乘法函数的分布和解析数论中的其他主题
  • 批准号:
    435272-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Multiplicative Number Theory and L-functions
乘法数论和 L 函数
  • 批准号:
    2404956
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Multiplicative structure of rational functions
有理函数的乘法结构
  • 批准号:
    DP200100355
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Projects
Multiplicative Number Theory and L-functions
乘法数论和 L 函数
  • 批准号:
    1902063
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
A study on multiplicative functions and zeros of zeta functions
乘法函数和zeta函数零点的研究
  • 批准号:
    19K03392
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite time blowup for supercritical equations, and correlations of multiplicative functions
超临界方程的有限时间爆炸以及乘法函数的相关性
  • 批准号:
    1764034
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Three problems on multiplicative functions and related sequences.
乘法函数及相关数列的三个问题。
  • 批准号:
    2104215
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
CBMS Conference: L-Functions and Multiplicative Number Theory
CBMS 会议:L 函数和乘法数论
  • 批准号:
    1836382
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Distribution of multiplicative functions and other topics in analytic number theory
乘法函数的分布和解析数论中的其他主题
  • 批准号:
    435272-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution of multiplicative functions and other topics in analytic number theory
乘法函数的分布和解析数论中的其他主题
  • 批准号:
    435272-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了