Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
基本信息
- 批准号:355462-2013
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enumeration is the study of counting mathematical objects. Some of the most important enumeration problems have their orgins in algebraic geometry. These "enumerative algebraic geometry" problems have a dual nature: they have a combinatorial (discrete) side and geometric (continuous) side. In some cases, algebra can provide a bridge between these two sides. However, there are many counting problems that are fundamental to a number of areas of mathematics, where we do not have a complete picture like this; in fact, there are relatively few instances where we know what all the pieces are, let alone how they fit together. In some cases we have only mysterious combinatorial procedures that seem to give the right answer, as if by accident, with little understanding of why they work. This type of knowledge provides few clues as to how to solve new, related problems.One of the main tools in this research proposal is the recently proved Mukhin-Tarasov-Varchenko Theorem: a seemingly innocuous result about solutions to certain equations over the real numbers, which turns out to have profound consequences in enumerative geometry. The Mukhin-Tarasov-Varchenko theorem provides a framework for explaining many of the strange phenomena that arise in this area in a simpler way, as well as a vehicle for discovering new, related theorems.Many of the geometry problems in this field date back to the 1880's, and have been studied extensively over the years. However, it is only recently that mathematicians have developed the tools needed to make progress on some of the harder, more refined questions. The research in this proposal will help to develop new approaches for answering fundamental, longstanding questions in enumerative geometry.
枚举是对数学对象进行计数的研究。一些最重要的计数问题起源于代数几何。这些“枚举代数几何”问题具有双重性质:它们具有组合(离散)方面和几何(连续)方面。在某些情况下,代数可以在这两个方面之间提供桥梁。然而,有许多计数问题是数学的许多领域的基础,我们没有这样一个完整的画面;事实上,我们知道所有碎片是什么的情况相对较少,更不用说它们如何组合在一起了。在某些情况下,我们只有神秘的组合程序,似乎是偶然地给出了正确的答案,而对它们为什么起作用却知之甚少。这类知识对如何解决新的相关问题提供了一些线索。本研究提案中的主要工具之一是最近证明的Mukhin-Tarasov-Varchenko定理:一个关于真实的数上某些方程的解的看似无害的结果,结果在枚举几何中产生了深远的影响。Mukhin-Tarasov-Varchenko定理提供了一个框架,以更简单的方式解释这一领域出现的许多奇怪现象,以及发现新的相关定理的工具。这一领域的许多几何问题可以追溯到19世纪80年代,多年来一直被广泛研究。然而,直到最近,数学家们才开发出在一些更难、更精细的问题上取得进展所需的工具。在这个建议的研究将有助于开发新的方法来回答基本的,长期存在的问题,枚举几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Purbhoo, Kevin其他文献
Purbhoo, Kevin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Purbhoo, Kevin', 18)}}的其他基金
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Real algebraic geometry and combinatorics
实代数几何和组合数学
- 批准号:
RGPIN-2018-04741 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
- 批准号:
355462-2013 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
- 批准号:
355462-2013 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
- 批准号:
355462-2013 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
- 批准号:
355462-2013 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial aspects of algebraic geometry
代数几何的组合方面
- 批准号:
355462-2008 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
- 批准号:
EP/X032779/1 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Fellowship
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052936 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052750 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052934 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052665 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry
职业:交换代数和代数几何中的分类和经典对称性
- 批准号:
1849173 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
CAREER: Categorical and Classical Symmetries in Commutative Algebra and Algebraic Geometry
职业:交换代数和代数几何中的分类和经典对称性
- 批准号:
1651327 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
- 批准号:
355462-2013 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
- 批准号:
355462-2013 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Classical algebraic geometry and modern combinatorics
经典代数几何和现代组合数学
- 批准号:
355462-2013 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual